Discrete and Combinatorial Mathematics: Pearson New International Edition

Author:   Ralph Grimaldi ,  Ralph Grimaldi
Publisher:   Pearson Education Limited
Edition:   5th edition
ISBN:  

9781292022796


Pages:   936
Publication Date:   14 August 2013
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $181.10 Quantity:  
Add to Cart

Share |

Discrete and Combinatorial Mathematics: Pearson New International Edition


Add your own review!

Overview

This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.

Full Product Details

Author:   Ralph Grimaldi ,  Ralph Grimaldi
Publisher:   Pearson Education Limited
Imprint:   Pearson Education Limited
Edition:   5th edition
Dimensions:   Width: 21.90cm , Height: 5.00cm , Length: 27.50cm
Weight:   2.280kg
ISBN:  

9781292022796


ISBN 10:   1292022795
Pages:   936
Publication Date:   14 August 2013
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

PART 1. FUNDAMENTALS OF DISCRETE MATHEMATICS. 1. Fundamental Principles of Counting. The Rules of Sum and Product. Permutations. Combinations: The Binomial Theorem. Combinations with Repetition. The Catalan Numbers (Optional). Summary and Historical Review. 2. Fundamentals of Logic. Basic Connectives and Truth Tables. Logical Equivalence: The Laws of Logic. Logical Implication: Rules of Inference. The Use of Quantifiers. Quantifiers, Definitions, and the Proofs of Theorems. Summary and Historical Review. 3. Set Theory. Sets and Subsets. Set Operations and the Laws of Set Theory. Counting and Venn Diagrams. A First Word on Probability. The Axioms of Probability (Optional). Conditional Probability: Independence (Optional). Discrete Random Variables (Optional). Summary and Historical Review. 4. Properties of the Integers: Mathematical Induction. The Well-Ordering Principle: Mathematical Induction. Recursive Definitions. The Division Algorithm: Prime Numbers. The Greatest Common Divisor: The Euclidean Algorithm. The Fundamental Theorem of Arithmetic. Summary and Historical Review. 5. Relations and Functions. Cartesian Products and Relations. Functions: Plain and One-to-One. Onto Functions: Stirling Numbers of the Second Kind. Special Functions. The Pigeonhole Principle. Function Composition and Inverse Functions. Computational Complexity. Analysis of Algorithms. Summary and Historical Review. 6. Languages: Finite State Machines. Language: The Set Theory of Strings. Finite State Machines: A First Encounter. Finite State Machines: A Second Encounter. Summary and Historical Review. 7. Relations: The Second Time Around. Relations Revisited: Properties of Relations. Computer Recognition: Zero-One Matrices and Directed Graphs. Partial Orders: Hasse Diagrams. Equivalence Relations and Partitions. Finite State Machines: The Minimization Process. Summary and Historical Review. PART 2. FURTHER TOPICS IN ENUMERATION. 8. The Principle of Inclusion and Exclusion. The Principle of Inclusion and Exclusion. Generalizations of the Principle. Derangements: Nothing Is in Its Right Place. Rook Polynomials. Arrangements with Forbidden Positions. Summary and Historical Review. 9. Generating Functions. Introductory Examples. Definition and Examples: Calculational Techniques. Partitions of Integers. The Exponential Generating Functions. The Summation Operator. Summary and Historical Review. 10. Recurrence Relations.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List