Differential- und Integralrechnung I: Funktionen einer reellen Veränderlichen

Author:   Hans Grauert ,  Ingo Lieb
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   4., verb. Aufl.
Volume:   26
ISBN:  

9783540075745


Pages:   206
Publication Date:   01 March 1976
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $94.91 Quantity:  
Add to Cart

Share |

Differential- und Integralrechnung I: Funktionen einer reellen Veränderlichen


Add your own review!

Overview

lesungen gemaB solI auch das Buch einem Leser, der keine Vorkenntnisse in hoherer Mathematik besitzt, die Gelegenheit geben, einen moglichst strengen und systematischen Aufbau der Theorie der reellen Funktionen kennenzulernen. Dementsprechend sind aIle Beweise bis in die Einzel- heiten hinein ausgeflihrt, und in den ersten Paragraphen werden wich- tige Beweismethoden eigens erlautert. Dabei nehmen wir jedoch den logischen und mengentheoretischen Gesetzen gegenliber einen naiven"", d. h. nicht-axiomatischen, Standpunkt ein. Das gilt besonders flir das Prinzip der vollstandigen Induktion und damit auch flir den Begriff der natlirlichen Zahl und der Folge. Wir geben eine Obersicht iiber den Inhalt des Buches. Grundlegend ist der Begriff der reellen Zahl. 1m ersten Kapitel werden die Axiome des rellen Zahlkorpers mit ihren einfachsten Folge- rungen ausflihrlich besprochen; die unendlich fernen Punkte + 00 und - 00 werden axiomatisch miteingeflihrt. Die nachsten beiden Kapitel sind dem Umgebungsbegriff und dem darauf fuBenden Grenzwertbegriff flir Folgen und Reihen gewidmet. Da wir flir die Definition der Konvergenz die natlirliche (uniforme) Topologie der Zahlengeraden zugrundelegen, bleibt die Konvergenz gegen ± 00 ausgeschlossen. - Die Begriffe limes superior"" und limes inferior"" sind so gefaBt, daB sie mit der Definition der halbstetigen Funktionen harnionieren. Reelle Funktionen werden im vierten Kapitel behandelt. Vor den stetigen werden halbstetige Funktionen definiert. Dieser Funktionstyp ist in Kapitel VII flir die Definition von Umgebungen im Funktions- raum wichtig und damit zur Einflihrung des Lebesgueschen Integrals, das in diesem Buch -das unbefriedigende Riemannsche Integral ablOst.

Full Product Details

Author:   Hans Grauert ,  Ingo Lieb
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   4., verb. Aufl.
Volume:   26
Dimensions:   Width: 13.30cm , Height: 1.20cm , Length: 20.30cm
Weight:   0.260kg
ISBN:  

9783540075745


ISBN 10:   3540075747
Pages:   206
Publication Date:   01 March 1976
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.
Language:   German

Table of Contents

Erstes Kapitel. Die reellen Zahlen.- § 1. Zahlen und Zahlengerade.- § 2. Mengen.- § 3. Körperaxiome.- § 4. Anordnungsaxiome.- § 5. Das Axiom vom Dedekindschen Schnitt.- Zweites Kapitel. Mengen und Folgen.- § 1. Beschränkte Mengen.- § 2. Punktfolgen.- § 3. Der Umgebungsbegriff.- § 4. Konvergenz.- Drittes Kapitel. Unendliche Reihen.- § 1. Konvergenz und Divergenz.- § 2. Reihen mit positiven Gliedern.- § 3. Alternierende Reihen.- § 4. Absolute Konvergenz.- Viertes Kapitel. Funktionen.- § 1. Der Funktionsbegriff.- § 2. Halbstetige Funktionen.- § 3. Stetige Funktionen.- § 4. Rationale Operationen.- § 5. Funktionen auf abgeschlossenen Intervallen.- § 6. Folgen von Funktionen.- § 7. Reihen von Funktionen.- § 8. Potenzreihen 83..- Fünftes Kapitel. Differentiation.- § 1. Differenzierbarkeit.- § 2. Rationale Operationen.- § 3. Lokale Extrema und Mittelwertsätze.- § 4. Die Regeln von de l’Hospital.- § 5. Vertauschung von Grenzprozessen.- § 6. Die Umkehrfunktion.- Sechstes Kapitel. Spezielle Funktionen und Taylorscher Satz.- § 1. Taylorentwicklung.- § 2. Interpolation.- § 3. Extremwerte.- § 4. Spezielle Funktionen.- § 5. Einige Beispiele.- Siebentes Kapitel. Integration.- § 1. Treppenfunktionen.- § 2. Integrierbarkeit.- § 3. Elementare Integrationsregeln.- § 4. Lebesguesche Konvergenz.- § 5. Nullmengen.- § 6. Riemannsche Integrierbarkeit.- § 7. Differentiation und Integration.- § 8. Partielle Integration.- § 9. Substitutionsregel.- § 10. Rationale Funktionen.- § 11. Unbeschränkte Funktionen.- § 12. Numerische Integrationsmethoden.- Literatur.- Wichtige Bezeichnungen.- Namen- und Sachverzeichnis.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List