Differential Harnack Inequalities and the Ricci Flow

Author:   Reto Muller
Publisher:   European Mathematical Society
ISBN:  

9783037190302


Pages:   100
Publication Date:   01 January 2006
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $73.92 Quantity:  
Add to Cart

Share |

Differential Harnack Inequalities and the Ricci Flow


Overview

The classical Harnack inequalities play an important role in the study of parabolic partial differential equations. The idea of finding a differential version of such a classical Harnack inequality goes back to Peter Li and Shing Tung Yau, who introduced a pointwise gradient estimate for a solution of the linear heat equation on a manifold which leads to a classical Harnack type inequality if being integrated along a path. Their idea has been successfully adopted and generalized to (nonlinear) geometric heat flows such as mean curvature flow or Ricci flow; most of this work was done by Richard Hamilton. In 2002, Grisha Perelman presented a new kind of differential Harnack inequality which involves both the (adjoint) linear heat equation and the Ricci flow. This led to a completely new approach to the Ricci flow that allowed interpretation as a gradient flow which maximizes different entropy functionals. This approach forms the main analytic core of Perelman's attempt to prove the Poincare conjecture. It is, however, of completely independent interest and may as well prove useful in various other areas, such as, for instance, the theory of Kahler manifolds. The goal of this book is to explain this analytic tool in full detail for the two examples of the linear heat equation and the Ricci flow. It begins with the original Li-Yau result, presents Hamilton's Harnack inequalities for the Ricci flow, and ends with Perelman's entropy formulas and space-time geodesics. The text is a self-contained, modern introduction to the Ricci flow and the analytic methods to study it. It is primarily addressed to students who have a basic introductory knowledge of analysis and of Riemannian geometry and who are attracted to further study in geometric analysis. No previous knowledge of differential Harnack inequalities or the Ricci flow is required.

Full Product Details

Author:   Reto Muller
Publisher:   European Mathematical Society
Imprint:   European Mathematical Society
Dimensions:   Width: 17.00cm , Height: 0.50cm , Length: 24.00cm
Weight:   0.206kg
ISBN:  

9783037190302


ISBN 10:   3037190302
Pages:   100
Publication Date:   01 January 2006
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List