|
|
|||
|
||||
OverviewThis textbook focuses on the study of curves and surfaces, applying modern differential equation theory to geometric problems. By introducing isothermal parameters, it simplifies the fundamental equations of surface theory, leading to clear derivations of results like those of H Hopf and S Bernstein for surfaces of constant and vanishing mean curvature.Deviating from traditional approaches, the book first treats n-dimensional Riemannian spaces by a corresponding metric, then constructs Riemannian manifolds through transition conditions. The ultimate goal is to prove the Hadamard-Cartan theorem on the diffeomorphic character of the exponential mapping in Riemannian manifolds with nonpositive sectional curvature. By considering curves and surfaces in their optimal parametrization, the resulting ODEs and complex PDEs can be analytically solved, eliminating the need for intricate tensor calculus.The approach follows that of G Monge in his treatise L'Application de l'Analyse à la Géométrie, applying analytical techniques to geometric problems. Building on this foundation, the book uses modern theory of ODEs and PDEs to study the local and global results for curves and surfaces and their relevant curvatures. Full Product DetailsAuthor: Friedrich Sauvigny (Brandenburg University Of Technology Cottbus-senftenberg, Germany)Publisher: World Scientific Publishing Co Pte Ltd Imprint: World Scientific Publishing Co Pte Ltd ISBN: 9789819816163ISBN 10: 9819816165 Pages: 376 Publication Date: 04 November 2025 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||