|
|
|||
|
||||
OverviewRecent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI. Full Product DetailsAuthor: Nobuyoshi KoshidaPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2009 ed. Dimensions: Width: 15.50cm , Height: 2.00cm , Length: 23.50cm Weight: 0.855kg ISBN: 9780387786889ISBN 10: 0387786880 Pages: 344 Publication Date: 18 December 2008 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsSi-Rich Dielectrics for Active Photonic Devices.- Nanocrystalline Si EL Devices.- Surface and Superlattice.- Optical Gain and Lasing in Low Dimensional Silicon: The Quest for an Injection Laser.- Silicon Single-Electron Devices.- Room Temperature Silicon Spin-Based Transistors.- Electron Transport in Nanocrystalline Silicon.- Silicon Nanocrystal Nonvolatile Memories.- Nanocrystalline Silicon Ballistic Electron Emitter.- Porous Silicon Optical Label-Free Biosensors.- Ultrasonic Emission from Nanocrystalline Porous Silicon.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||