|
|
|||
|
||||
OverviewThis book presents the development of a multimodal physiological signal acquisition system and cooperative control strategies for applications in upper-limb robotic rehabilitation. First, it introduces a non-pattern recognition EMG-based platform for hand rehabilitation, demonstrating its strong performance in both gesture recognition accuracy and responsiveness. It also discusses the role of EMG-based visual feedback, showing how real-time visualization of muscle activation enhances user performance during training. In turn, it reports on the validation of a low-cost multimodal acquisition solution using two different real-time biocooperative control strategies. The results demonstrate that the developed low-cost wearable platform, which integrates multiple sensors, wireless communication, and a high-efficiency real-time microcontroller, is highly versatile and configurable, and shows a good signal quality. By addressing two main aspects that limit the adoption of biocooperative systems in clinical rehabilitation settings – hardware affordability and system reliability – this outstanding Ph.D. thesis paves the way to the implementation of real-time biocooperative controls for future applications in robotic rehabilitation. Full Product DetailsAuthor: Ana Cisnal de la RicaPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG ISBN: 9783032024848ISBN 10: 3032024846 Pages: 78 Publication Date: 26 August 2025 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Not yet available ![]() This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |