Design and optimization of a novel tri-axial miniature ear-plug piezoresistive accelerometer with nanoscale piezoresistors

Author:   Marco Messina
Publisher:   Grin Publishing
ISBN:  

9783668592926


Pages:   276
Publication Date:   05 January 2018
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $147.23 Quantity:  
Add to Cart

Share |

Design and optimization of a novel tri-axial miniature ear-plug piezoresistive accelerometer with nanoscale piezoresistors


Add your own review!

Overview

Doctoral Thesis / Dissertation from the year 2013 in the subject Design (Industry, Graphics, Fashion), grade: N/A, Cranfield University, language: English, abstract: This work aims at the advancement of state-of-art accelerometer design and optimization methodology by developing an ear-plug accelerometer for race car drivers based on a novel mechanical principle. The accelerometer is used for the measurements of head acceleration when an injurious event occurs. Main requirements for such sensor are miniaturization (2x2 mm), because the device must be placed into the driver earpiece, and its measurement accuracy (i.e. high sensitivity, low crosstalk and low nonlinearity) since the device is used for safety monitoring purpose. A micro-electro-mechanical system (MEMS)-based (bulk micromachined) piezoresistive accelerometer was selected as enabling technology for the development of the sensor. The primary accelerometer elements that can be manipulated during the design stage are: the sensing element (piezoresistors), the micromechanical structure and the measurements circuit. Each of these elements has been specifically designed in order to maximize the sensor performance and to achieve the miniaturization required for the studied application. To achieve accelerometer high sensitivity and miniaturization silicon nanowires (SiNWs) as nanometer scale piezoresistors are adopted as sensing elements. Currently this technology is at an infancy stage, but very promising through the exploitation of the Giant piezoresistance effect of SiNWs. This work then measures the potential of the SiNWs as nanoscale piezoresistors by calculating the major performance indexes, both electrical and mechanical, of the novel accelerometer. The results clearly demonstrate that the use of nanoscale piezoresistors boosts the sensitivity by 30 times in comparison to conventional microscale piezoresistors. A feasibility study on nanowires fabrication by both top-down and bottom-up approaches is

Full Product Details

Author:   Marco Messina
Publisher:   Grin Publishing
Imprint:   Grin Publishing
Dimensions:   Width: 14.80cm , Height: 1.60cm , Length: 21.00cm
Weight:   0.363kg
ISBN:  

9783668592926


ISBN 10:   3668592926
Pages:   276
Publication Date:   05 January 2018
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List