Deep Reinforcement Learning with Python: RLHF for Chatbots and Large Language Models

Author:   Nimish Sanghi
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Second Edition
ISBN:  

9798868802720


Pages:   634
Publication Date:   15 July 2024
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $142.29 Quantity:  
Add to Cart

Share |

Deep Reinforcement Learning with Python: RLHF for Chatbots and Large Language Models


Add your own review!

Overview

Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL).  This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field.  New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities. You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs.  Whether it’s for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve. What You'll Learn Explore Python-based RL libraries, including StableBaselines3 and CleanRL   Work with diverse RL environments like Gymnasium, Pybullet, and Unity ML Understand instruction finetuning of Large Language Models using RLHF and PPO Study training and optimization techniques using HuggingFace, Weights and Biases,      and Optuna  Who This Book Is For Software engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch. 

Full Product Details

Author:   Nimish Sanghi
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   APress
Edition:   Second Edition
ISBN:  

9798868802720


Pages:   634
Publication Date:   15 July 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Nimish is a seasoned entrepreneur and an angel investor, with a rich portfolio of tech ventures in SaaS Software and Automation with AI across India, the US and Singapore. He has over 30 years of work experience. Nimish ventured into entrepreneurship in 2006 after holding leadership roles at global corporations like PwC, IBM, and Oracle. Nimish holds an MBA from Indian Institute of Management, Ahmedabad, India (IIMA), and a Bachelor of Technology in Electrical Engineering from Indian Institute of Technology, Kanpur, India (IITK). ​

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List