|
![]() |
|||
|
||||
OverviewDeep Learning Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks.Neural networks can be classified into dynamic and static categories. Static (feedforward) networks have no feedback elements and contain no delays; the output is calculated directly from the input through feedforward connections. In dynamic networks, the output depends not only on the current input to the network, but also on the current or previous inputs, outputs, or states of the network.Dynamic networks can be divided into two categories: those that have only feedforward connections, and those that have feedback, or recurrent, connections. To understand the difference between static, feedforward-dynamic, and recurrent-dynamic networks, create some networks and see how they respond to an input sequence.All the specifi dynamic networks discussed so far have either been focused networks, with the dynamics only at the input layer, or feedforward networks. The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic network, with feedback connections enclosing several layers of the network. The NARX model isbased on the linear ARX model, which is commonly used in time-series modelin Full Product DetailsAuthor: A VidalesPublisher: Independently Published Imprint: Independently Published Dimensions: Width: 15.20cm , Height: 1.40cm , Length: 22.90cm Weight: 0.358kg ISBN: 9781792848018ISBN 10: 1792848013 Pages: 242 Publication Date: 29 December 2018 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |