|
![]() |
|||
|
||||
OverviewThe book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation. Full Product DetailsAuthor: Matteo Sangiorgio , Fabio Dercole , Giorgio GuarisoPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2021 Weight: 0.191kg ISBN: 9783030944810ISBN 10: 3030944816 Pages: 104 Publication Date: 15 February 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction to chaotic dynamics’ forecasting,. Basic concepts of chaos theory and nonlinear time-series analysis.- Artificial and real-world chaotic oscillators.- Neural approaches for time series forecasting.- Neural predictors’ accuracy.- Neural predictors’ sensitivity and robustness.- Concluding remarks on chaotic dynamics’ forecasting.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |