Deep Learning: 2 Manuscripts - Deep Learning with Keras and Convolutional Neural Networks in Python

Author:   Frank Millstein
Publisher:   Createspace Independent Publishing Platform
ISBN:  

9781986718271


Pages:   262
Publication Date:   21 March 2018
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $63.33 Quantity:  
Add to Cart

Share |

Deep Learning: 2 Manuscripts - Deep Learning with Keras and Convolutional Neural Networks in Python


Add your own review!

Overview

Deep Learning - 2 BOOK BUNDLE!! Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You'll Learn Here... The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Convolutional Neural Networks in Python This book covers the basics behind Convolutional Neural Networks by introducing you to this complex world of deep learning and artificial neural networks in a simple and easy to understand way. It is perfect for any beginner out there looking forward to learning more about this machine learning field. This book is all about how to use convolutional neural networks for various image, object and other common classification problems in Python. Here, we also take a deeper look into various Keras layer used for building CNNs we take a look at different activation functions and much more, which will eventually lead you to creating highly accurate models able of performing great task results on various image classification, object classification and other problems. Therefore, at the end of the book, you will have a better insight into this world, thus you will be more than prepared to deal with more complex and challenging tasks on your own. Here Is a Preview of What You'll Learn In This Book... Convolutional neural networks structure How convolutional neural networks actually work Convolutional neural networks applications The importance of convolution operator Different convolutional neural networks layers and their importance Arrangement of spatial parameters How and when to use stride and zero-padding Method of parameter sharing Matrix multiplication and its importance Pooling and dense layers Introducing non-linearity relu activation function How to train your convolutional neural network models using backpropagation How and why to apply dropout CNN model training process How to build a convolutional neural network Generating predictions and calculating loss functions How to train and evaluate your MNIST classifier How to build a simple image classification CNN And much, much more! Get this book bundle NOW and SAVE money!

Full Product Details

Author:   Frank Millstein
Publisher:   Createspace Independent Publishing Platform
Imprint:   Createspace Independent Publishing Platform
Dimensions:   Width: 12.70cm , Height: 1.40cm , Length: 20.30cm
Weight:   0.264kg
ISBN:  

9781986718271


ISBN 10:   1986718271
Pages:   262
Publication Date:   21 March 2018
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List