Decoding Neural Circuit Structure and Function: Cellular Dissection Using Genetic Model Organisms

Author:   Arzu Celik ,  Mathias F. Wernet
Publisher:   Springer International Publishing AG
Edition:   1st ed. 2017
ISBN:  

9783319573625


Pages:   518
Publication Date:   09 August 2017
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $448.77 Quantity:  
Add to Cart

Share |

Decoding Neural Circuit Structure and Function: Cellular Dissection Using Genetic Model Organisms


Add your own review!

Overview

This book offers representative examples from fly and mouse models to illustrate the ongoing success of the synergistic, state-of-the-art strategy, focusing on the ways it enhances our understanding of sensory processing. The authors focus on sensory systems (vision, olfaction), which are particularly powerful models for probing the development, connectivity, and function of neural circuits, to answer this question: How do individual nerve cells functionally cooperate to guide behavioral responses? Two genetically tractable species, mice and flies, together significantly further our understanding of these processes. Current efforts focus on integrating knowledge gained from three interrelated fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types (“connectomics”) using high-resolution three-dimensional circuit anatomy, and (3) causal testing of how iden tified circuit elements contribute to visual perception and behavior.

Full Product Details

Author:   Arzu Celik ,  Mathias F. Wernet
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   1st ed. 2017
Weight:   1.204kg
ISBN:  

9783319573625


ISBN 10:   3319573624
Pages:   518
Publication Date:   09 August 2017
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Note from the editors.- 2. Overview: The current state of neural circuit dissection in genetic model organisms.- Part I: High-resultion Neuroanatomy using molecular-genetic tools.- 3. Neuroanatomical techniques in invertebrate model organisms (flies, worms).- 4. Neuroanatomical techniques in vertebrate model systems (mice, monkeys).- 5. The current state of whole-brain connectomics in invertebrates.- 6. The progress in large-scale connectomics in vertebrates.- 7. Establishing synaptic connection the invertebrate brain (neural superposition?).- 8. Target selection and synaptogenesis in vertebrate models.- Part II: The behavioral contributions of identified circuit elements.- 9. Behavioral paradigms for dissecting neural circuitry in invertebrates.- 10. Behavioral paradigms for dissecting neural circuitry in vertebrates.- 11. Targeted disruption of neuronal activity in behaving invertebrate models.- 12. Circuit breaking and optogenetics in vertebrates.- 13. Modeling of neural circuits in invertebrates.- 14. Modeling of neural circuits in vertebrates.- Part III: The functional contribution of identified cells to the circuit.- 15. The electrophysiological characterization of identified invertebrate circuit elements.- 16. Electrophysiology in combination with molecular genetic tools in vertebrates.- 17. Genetically encoded activity sensors in invertebrates.- 18. Genetically encoded activity sensors in vertebrates.- 19. Combining circuit breaking tools and the visualization of activity in invertebrates.- 20. Visualization of neuronal activity while circuit breaking in vertebrates.- Part IV: Molecular determinants of cell type diversity.- 21. The developmental origin of cell type diversity in invertebrate brains.- 22. The development of neuronal cell type diversity in the vertebrate brain.- 23. Transcriptional profiling of identified circuit elements in invertebrates.- 24. Transcriptional profiling in neural circuits in vertebrates.

Reviews

Author Information

Mathias Wernet is currently a professor of Neurobiology at the Freie University of Berlin. His current research deals with the neural circuitry underlying visual behaviors in Drosophila melanogaster and integrates studies spanning anatomy, behavior, and physiology. Arzu Celik is a professor of Developmental Neurobiology at Bogazici University in Istanbul, Turkey. Her research focuses on the generation of neuronal diversity and mechanisms of axon guidance in the visual and olfactory systems of Drosophila melanogaster.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List