|
![]() |
|||
|
||||
OverviewData Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights The Open Access version of this book, available at http://www.taylorfrancis.com, has been made available under a Creative Commons (CC) 4.0 license. Full Product DetailsAuthor: Yu Ding (Texas A&M University, USA)Publisher: Taylor & Francis Ltd Imprint: Chapman & Hall/CRC Weight: 0.620kg ISBN: 9780367729097ISBN 10: 0367729091 Pages: 424 Publication Date: 18 December 2020 Audience: College/higher education , General/trade , Tertiary & Higher Education , General Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsThis is the first book that focuses on the data science methodologies and their applications in a growing field, wind energy. It is well-organized and well-written. It will enhance the knowledge base of data science and its applications in the wind energy field. -- Elsayed A. Elsayed, Professor, Rutgers University Author InformationDr. Yu Ding is the Anderson-Interface Chair and Professor in the H. Milton School of Industrial and Systems Engineering at Georgia Tech. Prior to joining Georgia Tech in 2023, he was the Mike and Sugar Barnes Professor of Industrial and Systems Engineering at Texas A&M University and served as Associate Director for Research Engagement of Texas A&M Institute of Data Science. Dr. Ding's research is in the area of data and quality science. He received the 2019 IISE Technical Innovation Award and 2022 INFORMS Impact Prize for his data science innovations impacting wind energy applications. Dr. Ding is a Fellow of IISE and ASME. He has served as editor or associate editor for several major engineering data science journals, including as the 14th Editor in Chief of IISE Transactions, for the term of 2021-2024. Tab Content 6Author Website:Countries AvailableAll regions |