Data Mining in Finance: Advances in Relational and Hybrid Methods

Author:   Boris Kovalerchuk ,  Evgenii Vityaev
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 2002
Volume:   547
ISBN:  

9781475773323


Pages:   308
Publication Date:   20 March 2013
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $580.77 Quantity:  
Add to Cart

Share |

Data Mining in Finance: Advances in Relational and Hybrid Methods


Add your own review!

Overview

Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data. Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space. Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.

Full Product Details

Author:   Boris Kovalerchuk ,  Evgenii Vityaev
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 2002
Volume:   547
Dimensions:   Width: 15.50cm , Height: 1.80cm , Length: 23.50cm
Weight:   0.504kg
ISBN:  

9781475773323


ISBN 10:   1475773323
Pages:   308
Publication Date:   20 March 2013
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

The scope and methods of the study.- Numerical Data Mining Models and Financial Applications.- Rule-Based and Hybrid Financial Data Mining.- Relational Data Mining (RDM).- Financial Applications of Relational Data Mining.- Comparison of Performance of RDM and other methods in financial applications.- Fuzzy logic approach and its financial applications.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List