|
![]() |
|||
|
||||
OverviewPerform time series forecasts, linear prediction, and data segmentation with no-code Excel machine learning Key Features Segment data, regression predictions, and time series forecasts without writing any code Group multiple variables with K-means using Excel plugin without programming Build, validate, and predict with a multiple linear regression model and time series forecasts Book DescriptionData Forecasting and Segmentation Using Microsoft Excel guides you through basic statistics to test whether your data can be used to perform regression predictions and time series forecasts. The exercises covered in this book use real-life data from Kaggle, such as demand for seasonal air tickets and credit card fraud detection. You'll learn how to apply the grouping K-means algorithm, which helps you find segments of your data that are impossible to see with other analyses, such as business intelligence (BI) and pivot analysis. By analyzing groups returned by K-means, you'll be able to detect outliers that could indicate possible fraud or a bad function in network packets. By the end of this Microsoft Excel book, you'll be able to use the classification algorithm to group data with different variables. You'll also be able to train linear and time series models to perform predictions and forecasts based on past data. What you will learn Understand why machine learning is important for classifying data segmentation Focus on basic statistics tests for regression variable dependency Test time series autocorrelation to build a useful forecast Use Excel add-ins to run K-means without programming Analyze segment outliers for possible data anomalies and fraud Build, train, and validate multiple regression models and time series forecasts Who this book is forThis book is for data and business analysts as well as data science professionals. MIS, finance, and auditing professionals working with MS Excel will also find this book beneficial. Full Product DetailsAuthor: Fernando RoquePublisher: Packt Publishing Limited Imprint: Packt Publishing Limited ISBN: 9781803247731ISBN 10: 1803247738 Pages: 324 Publication Date: 26 May 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationFernando Roque has 24 years of experience working with statistics for quality control and financial risk assessment of projects since planning, budgeting, and execution. Fernando works applying python k-means and time-series machine-learning algorithms using vegetable activity (NDVI) drones' images to find the crop's region with more resilience to droughts. He also applies time-series and k-means for supply chain management (logistics) and inventory planning for seasonal demand. Tab Content 6Author Website:Countries AvailableAll regions |