Data Engineering Best Practices: Architect robust and cost-effective data solutions in the cloud era

Author:   Richard J. Schiller ,  David Larochelle
Publisher:   Packt Publishing Limited
ISBN:  

9781803244983


Pages:   550
Publication Date:   11 October 2024
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $131.97 Quantity:  
Add to Cart

Share |

Data Engineering Best Practices: Architect robust and cost-effective data solutions in the cloud era


Add your own review!

Overview

Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is forIf you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.

Full Product Details

Author:   Richard J. Schiller ,  David Larochelle
Publisher:   Packt Publishing Limited
Imprint:   Packt Publishing Limited
ISBN:  

9781803244983


ISBN 10:   1803244984
Pages:   550
Publication Date:   11 October 2024
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Richard J. Schiller is a chief architect, distinguished engineer, and startup entrepreneur with 40 years of experience delivering real-time large-scale data processing systems. He holds an MS in computer engineering from Columbia University's School of Engineering and Applied Science and a BA in computer science and applied mathematics. He has been involved with two prior successful startups and has coauthored three patents. He is a hands-on systems developer and innovator. David Larochelle has been involved in data engineering for startups, Fortune 500 companies, and research institutes. He holds a BS in computer science from the College of William & Mary, a Masters in computer science from the University of Virginia, and a Master's in communication from the University of Pennsylvania. David's career spans over 20 years, and his strong background has enabled him to work in a wide range of organizations, including startups, established companies, and research labs.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List