|
|
|||
|
||||
OverviewMasaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public. Full Product DetailsAuthor: Masaki KashiwaraPublisher: American Mathematical Society Imprint: American Mathematical Society Volume: No. 217 Weight: 0.325kg ISBN: 9780821827666ISBN 10: 0821827669 Pages: 254 Publication Date: 30 November 2002 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsBasic properties of $D$-modules Characteristic varieties Construction of $D$-modules Functorial properties of $D$-modules Regular holonomic systems $b$-functions Ring of formal microdifferential operators Microlocal analysis of holonomic systems Microlocal calculus of $b$-functions Appendix Bibliography Index Index of notations.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||