|
![]() |
|||
|
||||
OverviewThe original goal that ultimately led to this volume was the construction of motivic cohomology theory, whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated Milnor Conjecture by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology. Full Product DetailsAuthor: Vladimir Voevodsky , Andrei Suslin , Eric M FriedlanderPublisher: Princeton University Press Imprint: Princeton University Press ISBN: 9781283379823ISBN 10: 1283379821 Pages: 256 Publication Date: 01 January 2011 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |