|
![]() |
|||
|
||||
OverviewOrganic electronics are getting more and more interest from industrial companies and research groups in the last years since they enable many new applications, which could not be realized by inorganic materials [1{7]. Flexible displays [1], large-area sensors [1], light-emitting large surfaces [8], printable radio-frequency identification tags (RFID) for packaging or logistic industry [2] and many other systems which require exible, large area and low-cost electronic devices are now developed for the near future or even already commercialized. Organic light-emitting-diode (OLED) displays, for example, are now implemented in portable devices and have higher performance than the traditional LCD displays [9]. OLED displays are self illuminating and do not need back lightening, therefore they have higher brightness, contrast and viewing angle in comparison to LCD displays [9]. Many electronic devices producers implemented OLED displays in their high-end smartphones and SLR cameras [10], and recently LG (a Korean company) introduced a 55-inch OLED television [11]. Large-area solar cells based on organic materials have also found their way to commercialization [12]. All of these innovations were only possible after the introduction of organic conductors and semiconductors. Organic (semi)-conductors have the advantage of their low-cost processing technologies (e.g. printing or spray-coating). However, they have lower electrical conductivity, free charge carriers mobility [13] and packaging density than their inorganic counterparts. Therefore they are normally used in lowcost and low-performance applications, except in the case of OLED where they have clear advantages compared with other technologies. In order to produce fully exible devices, elementary devices for electronic circuits (e.g. transistors and diodes) need to be made with exible materials. The performance of these devices needs to be enhanced and their fabrication processes should be optimized to ensure their c Full Product DetailsAuthor: Zied FahemPublisher: Cuvillier Imprint: Cuvillier Dimensions: Width: 14.80cm , Height: 0.60cm , Length: 21.00cm Weight: 0.141kg ISBN: 9783954045617ISBN 10: 3954045613 Pages: 112 Publication Date: 21 November 2013 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |