|
|
|||
|
||||
OverviewHere, leading scientists present an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films and in nanostructures. In particular, they describe in detail coincidence techniques for studying many-particle correlations while critically examining the informational content of such processes from a theoretical point viewpoint. Furthermore, the book considers the current state of incorporating many-body effects into theoretical approaches. Covered topics: -Auger-electron photoelectron coincidence experiments and theories -Correlated electron emission from atoms, fullerens, clusters, metals and wide-band gap materials -Ion coincidence spectroscopies and ion scattering theories from surfaces -GW and dynamical mean-field approaches -Many-body effects in electronic and optical response Full Product DetailsAuthor: J Berakdar , Jurgen KirschnerPublisher: Wiley-VCH Verlag GmbH Imprint: Wiley-VCH Verlag GmbH Dimensions: Width: 18.60cm , Height: 1.80cm , Length: 24.60cm Weight: 0.604kg ISBN: 9783527404773ISBN 10: 3527404775 Pages: 255 Publication Date: 09 July 2004 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Out of Print Availability: Out of stock Table of ContentsPreface.List of Contributors.1 A First-Principles Scheme for Calculating the Electronic Structure of Strongly Correlated Materials: GW+DMFT ((F. Aryasetiawan, S. Biermann, and A. Georges).1.1 Introduction.1.2 The GW Approximation.1.2.1 Theory.1.2.2 The GW Approximation in Practice.1.3 Dynamical Mean Field Theory.1.3.1 DMFT in Practice.1.4 GW+DMFT.1.4.1 Simplified Implementation of GW+DMFT and Application to Ferromagnetic Nickel.1.5 Conclusions.References.2 A Many-body Approach to the Electronic and Optical Properties of Copper and Silver (A. Marini).2.1 Introduction.2.2 Quasi particle Electronic Structure of Copper.2.3 The Plasmon Resonance of Silver.2.4 Dynamical Excitonic Effects in Metals.2.5 Conclusions.References.3 Correlation Spectroscopy of Nano-size Materials ((O. Kidun, N. Fominykh, and J. Berakdar).3.1 Introduction.3.2 Generalities.3.3 Excitations in Finite Systems: Role of the Electron-Electron Interaction.3.3.1 Formal Development.3.4 Results and Discussion.3.5 Conclusions.References.4 Electron-Electron Coincidence Studies on Atomic Targets: A Review of (e,2e) and (e,3e) Experiments (A. Lahmam-Bennani).4.1 Introduction.4.2 Structure Studies.4.3 Dynamics Studies.4.3.1 The Optical Limit.4.3.2 Dynamics Studies at Intermediate Energies and Intermediate Momentum Transfer.4.4 Conclusion.References.5 Studying the Details of the Electron-Electron Interaction in Solids and Surfaces (J. Kirschner, C. Winkler, and J. Berakdar).5.1 Introduction.5.2 General Considerations.5.3 Results and Interpretations.5.4 Conclusions.References.6 Two-Electron Spectroscopy Versus Single-Electron Spectroscopy for Studying Secondary Emission from Surfaces (S. Samarin, O.M. Artamonov, A.D. Sergeant, and J.F. Williams).6.1 Introduction.6.2 Experimental Details of the Time-of-Flight (e,2e) Spectroscopy in Reflection Mode.6.2.1 Experimental Set-Up.6.2.2 Combination of Time-of-Flight Energy Measurements and Coincidence Technique.6.2.3 Data Processing.6.3 Experimental Results and Discussion.6.3.1 LiF Film on Si(100).6.3.2 Single Crystal of W(110).6.3.3 Single Crystal of Si(001).6.4 Conclusions.References.7 EMS Measurement of the Valence Spectral Function of Silicon - A Test of Many-body Theory (C. Bowles, A.S. Kheifets, V.A. Sashin, M. Vos, E. Weigold, and F. Aryasetiawan).7.1 Introduction.7.2 Experimental Details.7.3 Theory.7.3.1 Independent Particle Approximation.7.3.2 Electron Correlation Models.7.4 Results and Discussions.7.4.1 Band Structure.7.4.2 Diffraction Effects.7.4.3 Many-body Effects.7.5 Conclusions.References.8 Recent Results from (gamma, egamma) and Compton Spectroscopy (F. Bell).8.1 Introduction.8.2 Experiment.8.3 Results and Discussion.8.3.1 Graphite.8.3.2 Fullerene.8.3.3 Cu-Ni Alloy.8.4 Lifetime Effects in Compton Scattering.8.5 Summary.References.9 Theory of (e,2e) Spectroscopy from Ferromagnetic Surfaces (R. Feder and H. Gollisch).9.1 Introduction.9.2 Concepts and Formalism.9.3 Spin and Spatial Selection Rules.9.4 Numerical Results for Fe(110).References.10 Ab-initio Calculations of Charge Exchange in Ion-surface Collisions: An Embedded-cluster Approach (L. Wirtz, M. Dallos, H. Lischka, and J. Burgdorfer).10.1 Introduction.10.2 Convergence of the Density of States as a Function of Cluster Size.10.3 Going beyond Hartree-Fock.10.4 Convergence of Potential Energy Curves as a Function of Cluster Size.10.5 Conclusions.References.11 Coincident Studies on Electronic Interaction Mechanisms during Scattering of Fast Atoms from a LiF(001) Surface (H. Winter).11.1 Introduction.11.2 Experimental Developments.11.2.1 Energy Loss Spectroscopy via Time-of-Flight.11.2.2 Electron Number Spectra.11.3 Coincident TOF and Electron Number Spectra.11.3.1 Studies on Near-Threshold Behavior.11.4 Model for Electronic Excitation and Capture Processes during Scattering of Atoms from Insulator Surfaces.11.5 Summary and Conclusions.References.12 Many-body Effects in Auger-Photoelectron Coincidence Spectroscopy (M. Ohno).12.1 Introduction.12.2 APECS Spectrum.12.3 Shakeup/down and Coincidence Photoelectron Spectrum.12.4 Coincidence L3 Photoelectron Line of Cu Metal.12.5 Concluding Remarks.References.13 Auger-Photoelectron Coincidence Spectroscopy (APECS) of Transition Metal Compounds (R.A. Bartynski, A.K. See, W.-K. Siu, and S.L. Hulbert).13.1 Introduction.13.2 Experimental Aspects.13.3 Results and Discussion.13.4 Conclusions.References.14 Relevance of the Core Hole Alignment to Auger-Photoelectron Pair Angular Distributions in Solids (G. Stefani, R. Gotter, A. Ruocco, F. Offi, F. Da Pieve, A. Verdini, A. Liscio, S. Iacobucci, Hua Yao, and R. Bartynski).14.1 Introduction.14.2 AR-APECS Two Step Model.14.2.1 Atomic Core Ionization and Relaxation.14.2.2 Diffraction from Crystal Lattice.14.3 Experimental Results.14.3.1 Angular Discrimination.14.3.2 Energy Discrimination.14.3.3 Surface Sensitivity.14.4 Conclusions.References.15 Auger-Photoelectron Coincidence Spectroscopy Studies from Surfaces (S.M. Thurgate, Z.-T. Jiang, G. van Riessen, and C. Creagh).15.1 Introduction.15.2 APECS Experiments.15.3 Applications.15.3.1 Broadening of Cu 2p3/2.15.3.2 Broadening of Ag 3d5/2.15.3.3 Disorder Broadening.15.4 Conclusions .References.16 Development of New Apparatus for Electron-Polar-Angle-Resolved-Ion Coincidence Spectroscopy and Auger-Photoelectron Coincidence Spectroscopy (K. Mase, E. Kobayashi, and K. Isari).16.1 Introduction.16.2 EICO Analyzer Using a Coaxially Symmetric Electron Energy Analyzer and a Miniature Time-of-Flight Ion Mass Spectrometer (TOF-MS).16.2.1 Coaxially Symmetric Electron Energy Analyzer [46].16.2.2 Miniature Time-of-Flight Ion Mass Spectrometer (TOF-MS) [47].16.2.3 EICO Apparatus Using a Coaxially Symmetric Mirror Analyzer and a Miniature TOF-MS[14].16.3 EICO Analyzer Using a Coaxially Symmetric Mirror Analyzer and a Miniature Polar-Angle-Resolved TOF-MS[47].16.3.1 Miniature Polar-Angle-Resolved TOF-MS with Three Concentric Anodes [47].16.3.2 Electron-Polar-Angle-Resolved-Ion Coincidence Apparatus [47].16.4 APECS Apparatus Using a Coaxially Symmetric Mirror Analyzer and a Miniature CMA.16.4.1 Introduction.16.4.2 Miniature CMA [56].16.4.3 New APECS Apparatus [56].16.4.4 Application to Auger-Photoelectron Coincidence Spectroscopy [56].16.5 Conclusions.References.Appendix.Color Figures.Index.Reviews"""...provides an excellent snapshot of the status of state-of-the-art research along with projections about future directions of the field."" (MRS Bulletin, August 2005) ""Many-bodied phenomena is an important and difficult area of research. This book will help contribute to an understanding of this area."" (Applied Spectroscopy, July 2005) ""...for experimental or theoretical scientists conducting research, although...students interested in research in this area of spectroscopy will find this title extraordinarily valuable."" (E-STREAMS, March 2005) ""...gives an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films, and in nanostructures."" (Polymer News) ""Undoubtly, this book with its presentation of frontline research on correlation spectroscopy deserves many readers, both among experimentalists and theoreticians who are engaged in determining the electronic structure of solids."" (ChemPhysChem) ""The book is well laid-out, the figures are clear and a reasonably extensive index is provided...This monograph will be of use to researchers in this field, and may find use as a text for advanced graduate courses in electronic structure. As independent particle physics becomes better understood, the need to understand and properly treat many electron phenomena becomes increasingly important. This monograph is a significant and timely contribution to that end."" (Journal of Electron Spectroscopy) ""I recommend this book to serious researchers involved in surface physics and chemistry, as the book provides an excellent snapshot of the status of state-of-the-art research along with projections about future directions of the field."" (Library)" ...provides an excellent snapshot of the status of state-of-the-art research along with projections about future directions of the field. (MRS Bulletin, August 2005) Many-bodied phenomena is an important and difficult area of research. This book will help contribute to an understanding of this area. (Applied Spectroscopy, July 2005) ...for experimental or theoretical scientists conducting research, although...students interested in research in this area of spectroscopy will find this title extraordinarily valuable. (E-STREAMS, March 2005) ...gives an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films, and in nanostructures. (Polymer News) Undoubtly, this book with its presentation of frontline research on correlation spectroscopy deserves many readers, both among experimentalists and theoreticians who are engaged in determining the electronic structure of solids. (ChemPhysChem) The book is well laid-out, the figures are clear and a reasonably extensive index is provided...This monograph will be of use to researchers in this field, and may find use as a text for advanced graduate courses in electronic structure. As independent particle physics becomes better understood, the need to understand and properly treat many electron phenomena becomes increasingly important. This monograph is a significant and timely contribution to that end. (Journal of Electron Spectroscopy) I recommend this book to serious researchers involved in surface physics and chemistry, as the book provides an excellent snapshot of the status of state-of-the-art research along with projections about future directions of the field. (Library) Author InformationA. Marini A. Lahmam-Bennani F. Bell R. A. Bartynski, A. K. See, W.-K. Siu, and S. L. Hulbert R. Feder and H. Gollisch F. Aryasetiawan, S. Biermann and A. Georges O. Kidun, N. Fominykh and J. Berakdar L. Wirtz, M. Dallos, H. Lischka, and J. Burgdorfer K. Mase, E. Kobayashi, K. Isari M. Ohno S. Samarin, O. M. Artamonov, A. D. Sergeant, and J. F. Williams G. Stefani, R. Gotter, A. Ruocco, F. Offi, F. Da Pieve, A. Verdini, A. Liscio, S. Iacobucci, Hua Yao and R. A. Bartynski S. M. Thurgate, Z.-T. Jiang, G. van Riessen and C. Creagh C. Bowles, A. S. Kheifets, V. A. Sashin, M. Vos, E. Weigold, F. Aryasetiawan H. Winter J. Kirschner, C. Winkler and J.Berakdar Tab Content 6Author Website:Countries AvailableAll regions |
||||