Coolant Flow Instabilities in Power Equipment

Author:   Vladimir B. Khabensky ,  Vladimir Antonovich Gerliga
Publisher:   Taylor & Francis Inc
ISBN:  

9781466567047


Pages:   388
Publication Date:   17 December 2012
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $410.00 Quantity:  
Add to Cart

Share |

Coolant Flow Instabilities in Power Equipment


Add your own review!

Overview

Full Product Details

Author:   Vladimir B. Khabensky ,  Vladimir Antonovich Gerliga
Publisher:   Taylor & Francis Inc
Imprint:   CRC Press Inc
Dimensions:   Width: 15.60cm , Height: 2.50cm , Length: 23.40cm
Weight:   0.657kg
ISBN:  

9781466567047


ISBN 10:   146656704
Pages:   388
Publication Date:   17 December 2012
Audience:   Professional and scholarly ,  Professional and scholarly ,  Professional & Vocational ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Phase Flow Oscillatory Thermal-Hydraulic Instability. Oscillatory Stability Boundary in Hydrodynamic Interaction of Parallel Channels and Requirements to Simulate Unstable Processes on Test Facilities. Simplified Correlations for Determining the Two-Phase Flow Thermal-Hydraulic Oscillatory Stability Boundary. Some Notes on the Oscillatory Flow Stability Boundary. Static Instability. Thermal-Acoustic Oscillations in Heated Channels. Instability of Condensing Flows. Some Cases of Flow Instability in Pipelines. References.

Reviews

Author Information

Professor Vladimir B. Khabensky is the leading scholar in the field of heat transfer and hydrodynamics of the single- and double-phase flows in thermal and nuclear power engineering. He has been celebrated for his contribution to mathematical modeling of nonstationary thermo-hydraulic processes in NPP. More recently, he has contributed greatly to understanding of physicochemical and thermo-hydraulic processes in the high-temperature molten corium in the context of the problem of NPP safety during a severe accident involving the core meltdown. He has authored over 160 research manuscripts and inventions. Professor Vladimir A. Gerliga is renowned for his contribution to the field of nuclear power plant safety, hydraulic gas dynamics, pumps, turbines, and power installations of space vehicles. His research focused on physical and mathematical models of thermo-acoustic fluctuations in the channel core of nuclear power plants and designing methods for instability prediction in the main circuit on natural circulation by the analysis of noise. He has authored 5 books and over 150 research manuscripts.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List