|
![]() |
|||
|
||||
Overview§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods. Full Product DetailsAuthor: David SpringPublisher: Birkhauser Verlag AG Imprint: Birkhauser Verlag AG Edition: Reprint of the 1998 Edition Dimensions: Width: 15.50cm , Height: 1.20cm , Length: 23.50cm Weight: 0.710kg ISBN: 9783034800594ISBN 10: 3034800592 Pages: 213 Publication Date: 09 December 2010 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Introduction 2 Convex Hulls 3 Analytic Theory 4 Open Ample Relations in Spaces of 1-Jets5 Microfibrations 6 The Geometry of Jet spaces7 Convex Hull Extensions 8 Ample Relations 9 Systems of Partial Differential Equations10 Relaxation Theorem References Index Index of NotationReviewsAuthor InformationDavid Spring is a Professor of mathematics at the Glendon College in Toronto, Canada. Tab Content 6Author Website:Countries AvailableAll regions |