|
![]() |
|||
|
||||
OverviewThis book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers. Full Product DetailsAuthor: Andrei A. Agrachev , Yuri SachkovPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of hardcover 1st ed. 2004 Volume: 87 Dimensions: Width: 15.50cm , Height: 2.20cm , Length: 23.50cm Weight: 0.658kg ISBN: 9783642059070ISBN 10: 3642059074 Pages: 412 Publication Date: 05 December 2010 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Vector Fields and Control Systems on Smooth Manifolds.- 2 Elements of Chronological Calculus.- 3 Linear Systems.- 4 State Linearizability of Nonlinear Systems.- 5 The Orbit Theorem and its Applications.- 6 Rotations of the Rigid Body.- 7 Control of Configurations.- 8 Attainable Sets.- 9 Feedback and State Equivalence of Control Systems.- 10 Optimal Control Problem.- 11 Elements of Exterior Calculus and Symplectic Geometry.- 12 Pontryagin Maximum Principle.- 13 Examples of Optimal Control Problems.- 14 Hamiltonian Systems with Convex Hamiltonians.- 15 Linear Time-Optimal Problem.- 16 Linear-Quadratic Problem.- 17 Sufficient Optimality Conditions, Hamilton-Jacobi Equation, and Dynamic Programming.- 18 Hamiltonian Systems for Geometric Optimal Control Problems.- 19 Examples of Optimal Control Problems on Compact Lie Groups.- 20 Second Order Optimality Conditions.- 21 Jacobi Equation.- 22 Reduction.- 23 Curvature.- 24 Rolling Bodies.- A Appendix.- A.2 Remainder Term of the Chronological Exponential.- References.- List of Figures.ReviewsAus den Rezensionen: Der Band ist aus Graduiertenkursen an der International School for Advanced Studies in Triest entstanden ... Mathematisch werden gute Kenntnisse der Analysis, der linearen Algebra und der Funktionalanalysis vorausgesetzt. ... Bekannte und neue Beispiele ... illustrieren hier die Fulle an Aussagen in sehr anschaulicher Weise. Insgesamt ist so ein Band entstanden, der Mathematikern und mathematisch interessierten Anwendern wertvolle Anregungen bei der Auseinandersetzung mit gesteuerten bzw. geregelten nichtlinearen Systemen und deren Optimierung bietet. (l. Troch, in: IMN - Internationale Mathematische Nachrichten, 2006, Issue 202, S. 44 f.) Aus den Rezensionen: Der Band ist aus Graduiertenkursen an der International School for Advanced Studies in Triest entstanden ... Mathematisch werden gute Kenntnisse der Analysis, der linearen Algebra und der Funktionalanalysis vorausgesetzt. ... Bekannte und neue Beispiele ... illustrieren hier die Fulle an Aussagen in sehr anschaulicher Weise. Insgesamt ist so ein Band entstanden, der Mathematikern und mathematisch interessierten Anwendern wertvolle Anregungen bei der Auseinandersetzung mit gesteuerten bzw. geregelten nichtlinearen Systemen und deren Optimierung bietet. (l. Troch, in: IMN - Internationale Mathematische Nachrichten, 2006, Issue 202, S. 44 f.) Aus den Rezensionen: Der Band ist aus Graduiertenkursen an der International School for Advanced Studies in Triest entstanden ! Mathematisch werden gute Kenntnisse der Analysis, der linearen Algebra und der Funktionalanalysis vorausgesetzt. ! Bekannte und neue Beispiele ! illustrieren hier die Fulle an Aussagen in sehr anschaulicher Weise. Insgesamt ist so ein Band entstanden, der Mathematikern und mathematisch interessierten Anwendern wertvolle Anregungen bei der Auseinandersetzung mit gesteuerten bzw. geregelten nichtlinearen Systemen und deren Optimierung bietet. (l. Troch, in: IMN - Internationale Mathematische Nachrichten, 2006, Issue 202, S. 44 f.) Author InformationAndrei A. Agrachev Born in Moscow, Russia. Graduated: Moscow State Univ., Applied Math. Dept., 1974. Ph.D.: Moscow State Univ., 1977. Doctor of Sciences (habilitation): Steklov Inst. for Mathematics, Moscow, 1989. Invited speaker at the International Congress of Mathematicians ICM-94 in Zurich. Over 90 research papers on Control Theory, Optimization, Geometry (featured review of Amer. Math. Soc., 2002). Professional Activity: Inst. for Scientific Information, Russian Academy of Sciences, Moscow, 1977-1992; Moscow State Univ., 1989-1997; Steklov Inst. for Mathematics, Moscow, 1992-present; International School for Advanced Studies (SISSA-ISAS), Trieste, 2000-present. Current positions: Professor of SISSA-ISAS, Trieste, Italy and Leading Researcher of the Steklov Ins. for Math., Moscow, Russia Yuri L. Sachkov Born in Dniepropetrovsk, Ukraine. Graduated: Moscow State Univ., Math. Dept., 1986. Ph.D.: Moscow State Univ., 1992. Over 20 research papers on Control Theory. Professional Activity: Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalessky, 1989-present; University of Pereslavl, 1993-present. Steklov Inst. for Mathematics, Moscow, 1998-1999; International School for Advanced Studies (SISSA-ISAS), Trieste, 1999-2001. Current positions: Senior researcher of Program Systems Institute, Pereslavl-Zalessky, Russia; Associate professor of University of Pereslavl, Russia. Tab Content 6Author Website:Countries AvailableAll regions |