Control of Synchronous Motors

Author:   Jean-Paul Louis
Publisher:   ISTE Ltd and John Wiley & Sons Inc
ISBN:  

9781848212732


Pages:   432
Publication Date:   13 May 2011
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $408.95 Quantity:  
Add to Cart

Share |

Control of Synchronous Motors


Add your own review!

Overview

Full Product Details

Author:   Jean-Paul Louis
Publisher:   ISTE Ltd and John Wiley & Sons Inc
Imprint:   ISTE Ltd and John Wiley & Sons Inc
Dimensions:   Width: 16.30cm , Height: 2.80cm , Length: 24.10cm
Weight:   0.767kg
ISBN:  

9781848212732


ISBN 10:   1848212739
Pages:   432
Publication Date:   13 May 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Introduction xv Jean-Paul LOUIS Chapter 1. Synchronous motor controls, Problems and Modeling 1 Jean-Paul LOUIS, Damien FLIELLER, Ngac Ky NGUYEN and Guy STURTZER 1.1. Introduction 1 1.2. Problems on the synchronous motor control 2 1.3. Descriptions and physical modeling of the synchronous motor  6 1.4. Modeling in dynamic regime of the synchronous motor in the natural three-phase a-b-c reference frame 14 1.5. Vector transformations and dynamic models in the α-β and d-q reference frames (sinusoidal field distribution machines with non-salient and salient poles) 24 1.6. Can we extend the Park transformation to synchronous motors with non-sinusoidal field distributions?  31 1.7. Conclusion 39 1.8. Appendices 39 1.9. Bibliography 44 Chapter 2. Optimal Supply and Synchronous Motors Torque Control: Designs in the a-b-c Reference Frame 49 Damien FLIELLER, Jean-Paul LOUIS, Guy STURTZER and Ngac Ky NGUYEN 2.1. Introduction: problems of the controls in a-b-c 49 2.2. Model in the a-b-c reference frame: extension of the steady state approach in transient regime 50 2.3. Structures of torque controls designed in the a-b-c reference frame 54 2.4. Performances and criticisms of the control approach in the a-b-c reference frame 57 2.5. Generalization: extension of the supplies to the case of non-sinusoidal distribution machines 78 2.6. Use of Fourier expansion to obtain optimal currents 90 2.7. Conclusion 112 2.8. Appendices 113 2.9. Bibliography 114 Chapter 3. Optimal Supplies and Synchronous Motors Torque Controls. Design in the d-q Reference Frame 119 Damien FLIELLER, Jean-Paul LOUIS, Guy STURTZER and Ngac Ky NGUYEN 3.1. Introduction: on the controls designed in the Park d-q reference frame 119 3.2. Dynamic model (case of the salient pole machine and constant excitation) 120 3.3. First approach to determine of optimal current references (d-q reference frame)122 3.4. Determination of the current controls designed in the d-q reference frame 124 3.5. New control by model inversion: example of an IP controller with compensations 135 3.6. Optimal supply of the salient poles synchronous motors; geometrical approach of the isotorque curves 143 3.7. Conclusion 166 3.8. Appendices 167 3.9. Bibliography 169 Chapter 4. Drive Controls with Synchronous Motors 173 Jean-Paul LOUIS, Damien FLIELLER, Ngac Ky NGUYEN and Guy STURTZER 4.1. Introduction 173 4.2. Principles adopted for speed controls: case of IP controllers 176 4.3. Speed controls designed in the a-b-c reference frame (application to a non-salient pole machine) 179 4.4. Determination of the speed controls designed in the d-q reference frame (application to a salient pole machine) 184 4.5. Note on position regulations 211 4.6. Conclusion 215 4.7. Appendices 216 4.8. Bibliography 217 Chapter 5. Digital Implementation of Vector Control of Synchronous Motors 221 Flavia KHATOUNIAN and Eric MONMASSON 5.1. Introduction 221 5.2. Classical, analog and ideal torque control of a synchronous motor 223 5.3. Digital implementation problem of the synchronous motor vector control 227 5.4. Discretization of the control system 230 5.5. Study of the delays introduced by the digital implementation of the vector control of the synchronous motor 237 5.6. Quantization problems 241 5.7. Delays in the reverse Park transformation 248 5.8. Conclusion 248 5.9. Bibliography 249 Chapter 6. Direct Control of a Permanent Magnet Synchronous Machine 251 Jean-Marie RÉTIF 6.1. Introduction 251 6.2. Model of the permanent magnet synchronous machine in the d-q reference frame 252 6.3. Conventional DTC with free switching frequency 253 6.4. DTC at a fixed switching frequency 258 6.5. Predictive direct control 264 6.6. Conclusion 279 6.7. Bibliography 280 Chapter 7. Synchronous Machine and Inverter Fault Tolerant Predictive Controls 283 Caroline DOC, Vincent LANFRANCHI and Nicolas PATIN 7.1. Introduction 283 7.2. Topologies of three-phase fault tolerant machines 284 7.3. Topologies of fault tolerant converters 285 7.4. Fault tolerant controls 287 7.5. Conclusion 302 7.6. Bibliography 303 Chapter 8. Characterization of Control without a Mechanical Sensor in Permanent Magnet Synchronous Machines 305 Maurice FADEL 8.1. Introduction 305 8.2. Sensorless control of PMSM, thanks to an extended Kalman filter 313 8.3. Comparison with the MRAS (model reference adaptive system) method 321 8.4. Experimental results comparison 323 8.5. Control without sensor of the PMSM with load torque observation 325 8.6. Starting the PMSM without a mechanical sensor 334 8.7. Conclusion 344 8.8. Bibliography 345 Chapter 9. Sensorless Control of Permanent Magnet Synchronous Machines: Deterministic Methods, Convergence and Robustness 347 Farid MEIBODY-TABAR and Babak NAHID-MOBARAKEH 9.1. Introduction 347 9.2. Modeling PMSMs for mechanical sensorless control 350 9.3. Convergence analysis of mechanical sensorless control laws 356 9.4. Estimation of the back-EMF vector 371 9.5. Robustness of sensorless control of PMSM with respect to parameter uncertainties 373 9.6. Sensorless control of PMSMs in the presence of uncertainties on the resistance 387 9.7. Conclusion 396 9.8. Appendix 1 397 9.9. Appendix 2 397 9.10. Bibliography 398 List of Authors 401 Index 403

Reviews

Author Information

Jean-Paul Louis is currently ""professor emeritus"" at ENS Cachan. His current research interests are in the fields of modelling and control of electrical machines and electrical systems.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

ARG20253

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List