|
![]() |
|||
|
||||
OverviewOne of the most effective ways to stimulate students to enjoy intellectual efforts is the scientific competition. In 1894 the Hungarian Mathematical and Physical Society introduced a mathematical competition for high school students. The success of high school competitions led the Mathematical Society to found a college level contest, named after Miklós Schweitzer. The problems of the Schweitzer Contests are proposed and selected by the most prominent Hungarian mathematicians. This book collects the problems posed in the contests between 1962 and 1991 which range from algebra, combinatorics, theory of functions, geometry, measure theory, number theory, operator theory, probability theory, topology, to set theory. The second part contains the solutions. The Schweitzer competition is one of the most unique in the world. The experience shows that this competition helps to identify research talents. This collection of problems and solutions in several fields in mathematics can serve as a guide for many undergraduates and young mathematicians. The large variety of research level problems might be of interest for more mature mathematicians and historians of mathematics as well. Full Product DetailsAuthor: Gabor J. SzekelyPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 1996 Dimensions: Width: 15.50cm , Height: 3.00cm , Length: 23.50cm Weight: 0.884kg ISBN: 9781461268864ISBN 10: 1461268869 Pages: 570 Publication Date: 30 September 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1. Problems of the Contests.- 2. Results of the Contests.- 3. Solutions to the Problems.- 3.1 Algebra (József Pelikán).- 3.2 Combinatorics (Ervin Gy?ri).- 3.3 Theory of Functions (János Bognár and Vilmos Totik).- 3.4 Geometry (Balázs Csikós).- 3.5 Measure Theory (János Bognár).- 3.6 Number Theory (Imre Z. Ruzsa).- 3.7 Operators (János Bognár).- 3.8 Probability Theory (Gabriella Szép).- 3.9 Sequences and Series (Jen? Tör?csik).- 3.10 Topology (Gábor Moussong).- 3.11 Set Theory (Péter Komjáth).- Index of Names.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |