Construct, Merge, Solve & Adapt: A Hybrid Metaheuristic for Combinatorial Optimization

Author:   Christian Blum
Publisher:   Springer International Publishing AG
Edition:   2024 ed.
ISBN:  

9783031601026


Pages:   192
Publication Date:   19 June 2024
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $369.57 Quantity:  
Add to Cart

Share |

Construct, Merge, Solve & Adapt: A Hybrid Metaheuristic for Combinatorial Optimization


Add your own review!

Overview

This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver. Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem. The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.

Full Product Details

Author:   Christian Blum
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   2024 ed.
ISBN:  

9783031601026


ISBN 10:   3031601025
Pages:   192
Publication Date:   19 June 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Christian Blum is a Senior Research Scientist at the Artificial Intelligence Research Institute (IIIA) and the Spanish National Research Council (CSIC). He is one of the most influential researchers at the intersection of Artificial Intelligence, Operations Research, Optimization, Heuristics, Natural Computing and Computational Intelligence. He is the co-editor of ""Swarm Intelligence"" (Springer, 2006) and co-author of ""Hybrid Metaheuristics"" (Springer, 2016). 

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List