Conjectures in Arithmetic Algebraic Geometry: A Survey

Author:   Wilfred W. J. Hulsbergen
Publisher:   Springer Fachmedien Wiesbaden
Edition:   Softcover reprint of the original 1st ed. 1992
Volume:   18
ISBN:  

9783528064334


Pages:   240
Publication Date:   01 January 1992
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $145.17 Quantity:  
Add to Cart

Share |

Conjectures in Arithmetic Algebraic Geometry: A Survey


Add your own review!

Overview

In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro- duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich- let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper- ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza- tion of Dirichlet's L-functions with a generalization of class field the- ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.

Full Product Details

Author:   Wilfred W. J. Hulsbergen
Publisher:   Springer Fachmedien Wiesbaden
Imprint:   Vieweg+Teubner Verlag
Edition:   Softcover reprint of the original 1st ed. 1992
Volume:   18
Dimensions:   Width: 15.50cm , Height: 1.30cm , Length: 23.50cm
Weight:   0.388kg
ISBN:  

9783528064334


ISBN 10:   3528064331
Pages:   240
Publication Date:   01 January 1992
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.
Language:   German

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List