Computational Techniques for Fluid Dynamics 1: Fundamental and General Techniques

Author:   Clive A.J. Fletcher
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   2nd ed. 1998
ISBN:  

9783540530589


Pages:   401
Publication Date:   10 April 1991
Format:   Paperback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $237.47 Quantity:  
Add to Cart

Share |

Computational Techniques for Fluid Dynamics 1: Fundamental and General Techniques


Add your own review!

Overview

This well-known 2-volume textbook provides senior undergraduate and postgraduate engineers, scientists and applied mathematicians with the specific techniques, and the framework to develop skills in using the techniques in the various branches of computational fluid dynamics.Volume 1 systematically develops fundamental computational techniques, partial differential equations including convergence, stability and consistency and equation solution methods. A unified treatment of finite difference, finite element, finite volume and spectral methods, as alternative means of discretion, is emphasized. For the second edition the author also compiled a separately available manual of solutions to the many exercises to be found in the main text.

Full Product Details

Author:   Clive A.J. Fletcher
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   2nd ed. 1998
Dimensions:   Width: 15.50cm , Height: 2.10cm , Length: 23.50cm
Weight:   1.290kg
ISBN:  

9783540530589


ISBN 10:   3540530584
Pages:   401
Publication Date:   10 April 1991
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

1. Computational Fluid Dynamics: An Introduction.- 1.1 Advantages of Computational Fluid Dynamics.- 1.2 Typical Practical Problems.- 1.3 Equation Structure.- 1.4 Overview of Computational Fluid Dynamics.- 1.5 Further Reading.- 2. Partial Differential Equations.- 2.1 Background.- 2.2 Hyperbolic Partial Differential Equations.- 2.3 Parabolic Partial Differential Equations.- 2.4 Elliptic Partial Differential Equations.- 2.5 Traditional Solution Methods.- 2.6 Closure.- 2.7 Problems.- 3. Preliminary Computational Techniques.- 3.1 Discretisation.- 3.2 Approximation to Derivatives.- 3.3 Accuracy of the Discretisation Process.- 3.4 Wave Representation.- 3.5 Finite Difference Method.- 3.6 Closure.- 3.7 Problems.- 4. Theoretical Background.- 4.1 Convergence.- 4.2 Consistency.- 4.3 Stability.- 4.4 Solution Accuracy.- 4.5 Computational Efficiency.- 4.6 Closure.- 4.7 Problems.- 5. Weighted Residual Methods.- 5.1 General Formulation.- 5.2 Finite Volume Method.- 5.3 Finite Element Method and Interpolation.- 5.4 Finite Element Method and the Sturm-Liouville Equation.- 5.5 Further Applications of the Finite Element Method.- 5.6 Spectral Method.- 5.7 Closure.- 5.8 Problems.- 6. Steady Problems.- 6.1 Nonlinear Steady Problems.- 6.2 Direct Methods for Linear Systems.- 6.3 Iterative Methods.- 6.4 Pseudotransient Method.- 6.5 Strategies for Steady Problems.- 6.6 Closure.- 6.7 Problems.- 7. One-Dimensional Diffusion Equation.- 7.1 Explicit Methods.- 7.2 Implicit Methods.- 7.3 Boundary and Initial Conditions.- 7.4 Method of Lines.- 7.5 Closure.- 7.6 Problems.- 8. Multidimensional Diffusion Equation.- 8.1 Two-Dimensional Diffusion Equation.- 8.2 Multidimensional Splitting Methods.- 8.3 Splitting Schemes and the Finite Element Method.- 8.4 Neumann Boundary Conditions.- 8.5 Method of Fractional Steps.- 8.6 Closure.- 8.7 Problems.- 9. Linear Convection-Dominated Problems.- 9.1 One-Dimensional Linear Convection Equation.- 9.2 Numerical Dissipation and Dispersion.- 9.3 Steady Convection-Diffusion Equation.- 9.4 One-Dimensional Transport Equation.- 9.5 Two-Dimensional Transport Equation.- 9.6 Closure.- 9.7 Problems.- 10. Nonlinear Convection-Dominated Problems.- 10.1 One-Dimensional Burgers’ Equation.- 10.2 Systems of Equations.- 10.3 Group Finite Element Method.- 10.4 Two-Dimensional Burgers’ Equation.- 10.5 Closure.- 10.6 Problems.- Appendix A.1 Empirical Determination of the Execution Time of Basic Operations.- A.2 Mass and Difference Operators.- References.

Reviews

From the reviews In summary, a book of considerable utlity both in the classroom and as a reference volume ... Fletcher's book is sure to become an invaluable tool for student and researcher alike, and a trusted introduction and guide to the rapidly evolving field of CFD. (H. Aref in: Journal of Fluid Mechanics)


From the reviews In summary, a book of considerable utlity both in the classroom and as a reference volume ... Fletcher's book is sure to become an invaluable tool for student and researcher alike, and a trusted introduction and guide to the rapidly evolving field of CFD. (H. Aref in: Journal of Fluid Mechanics)


From the reviews <br> In summary, a book of considerable utlity both in the classroom and as a reference volume ... Fletcher's book is sure to become an invaluable tool for student and researcher alike, and a trusted introduction and guide to the rapidly evolving field of CFD. <br>(H. Aref in: Journal of Fluid Mechanics)


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List