|
![]() |
|||
|
||||
OverviewThe field of computational catalysis has existed in one form or another for at least 30 years. Its ultimate goal - the design of a novel catalyst entirely from the computer. While this goal has not been reached yet, the 21st Century has already seen key advances in capturing the myriad complex phenomena that are critical to catalyst behaviour under reaction conditions. This book presents an in depth review of select methods and approaches being adopted to push forward the boundaries of computational catalysis. Each method is supported with applied examples selected by the author, proving to be a more substantial resource than the existing literature. Both existing and possible future high-impact techniques are presented. An essential reference to anyone working in the field, the bookÆs editors share more than two decades of experience in computational catalysis and have brought together an impressive array of contributors. The book is written to ensure postgraduates and professionals will benefit from this one-stop resource on the cutting-edge of the field. Full Product DetailsAuthor: Aravind Asthagiri (Ohio State University, USA) , Michael J Janik (Pennsylvania State University, USA) , James J. Spivey , Michael J. JanikPublisher: Royal Society of Chemistry Imprint: Royal Society of Chemistry Volume: Volume 14 Dimensions: Width: 15.60cm , Height: 2.20cm , Length: 23.40cm Weight: 0.562kg ISBN: 9781849734516ISBN 10: 1849734518 Pages: 276 Publication Date: 02 December 2013 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Tertiary & Higher Education Replaced By: 9781788018814 Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationAravind Asthagiri is Associate Professor at the Ohio State University. His research interests include the application of atmoistic simulations to examine and rationally design novel materals. Michael Janik is assistant Professor of Chemical Engineering at Penn State University. His current research employs computational methods to understand and design catalysts for alternative energy conversion systems. Tab Content 6Author Website:Countries AvailableAll regions |