Computational Business Analytics

Author:   Subrata Das
Publisher:   Taylor & Francis Inc
Volume:   34
ISBN:  

9781439890707


Pages:   516
Publication Date:   14 December 2013
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $284.00 Quantity:  
Add to Cart

Share |

Computational Business Analytics


Add your own review!

Overview

Learn How to Properly Use the Latest Analytics Approaches in Your Organization Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies. The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical statistical techniques with symbolic artificial intelligence (AI) and machine learning (ML) techniques for richer predictive and prescriptive analytics. With a special emphasis on methods that handle time and textual data, the text: Enriches principal component and factor analyses with subspace methods, such as latent semantic analyses Combines regression analyses with probabilistic graphical modeling, such as Bayesian networks Extends autoregression and survival analysis techniques with the Kalman filter, hidden Markov models, and dynamic Bayesian networks Embeds decision trees within influence diagrams Augments nearest-neighbor and k-means clustering techniques with support vector machines and neural networks These approaches are not replacements of traditional statistics-based analytics; rather, in most cases, a generalized technique can be reduced to the underlying traditional base technique under very restrictive conditions. The book shows how these enriched techniques offer efficient solutions in areas, including customer segmentation, churn prediction, credit risk assessment, fraud detection, and advertising campaigns.

Full Product Details

Author:   Subrata Das
Publisher:   Taylor & Francis Inc
Imprint:   Chapman & Hall/CRC
Volume:   34
Dimensions:   Width: 15.60cm , Height: 1.80cm , Length: 23.40cm
Weight:   1.110kg
ISBN:  

9781439890707


ISBN 10:   1439890706
Pages:   516
Publication Date:   14 December 2013
Audience:   Professional and scholarly ,  Professional and scholarly ,  Professional & Vocational ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Subrata Das is the founder and president of Machine Analytics and also serves as a consulting scientist to other companies. He has many years of experience in industrial, government, and academic research and development. He earned his Ph.D. in computer science and master's in mathematics.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List