|
![]() |
|||
|
||||
OverviewResearch in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Grobner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful. Full Product DetailsAuthor: Charles C Sims (Rutgers University, New Jersey)Publisher: Cambridge University Press Imprint: Cambridge University Press ISBN: 9781306148429ISBN 10: 1306148421 Pages: 622 Publication Date: 01 January 1994 Audience: General/trade , General Format: Undefined Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |