|
![]() |
|||
|
||||
OverviewThis book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems. Full Product DetailsAuthor: T. Ravindra Babu , M. Narasimha Murty , S.V. SubrahmanyaPublisher: Springer London Ltd Imprint: Springer London Ltd Edition: Softcover reprint of the original 1st ed. 2013 Dimensions: Width: 15.50cm , Height: 1.20cm , Length: 23.50cm Weight: 3.343kg ISBN: 9781447170556ISBN 10: 1447170555 Pages: 197 Publication Date: 17 September 2016 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsIntroduction.- Data Mining Paradigms.- Run-Length Encoded Compression Scheme.- Dimensionality Reduction by Subsequence Pruning.- Data Compaction through Simultaneous Selection of Prototypes and Features.- Domain Knowledge-Based Compaction.- Optimal Dimensionality Reduction.- Big Data Abstraction through Multiagent Systems.- Intrusion Detection Dataset: Binary Representation.ReviewsAuthor InformationDr. T. Ravindra Babu is a Principal Researcher in the E-Commerce Research Labs at Infosys Ltd., Bangalore, India. Mr. S.V. Subrahmanya is Vice President and Research Fellow at the same organization. Dr. M. Narasimha Murty is a Professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore, India. Tab Content 6Author Website:Countries AvailableAll regions |