|
![]() |
|||
|
||||
OverviewComprehensive Biomaterials brings together the myriad facets of biomaterials into one, major series of six edited volumes that would cover the field of biomaterials in a major, extensive fashion: Volume 1: Metallic, Ceramic and Polymeric Biomaterials Volume 2: Biologically Inspired and Biomolecular Materials Volume 3: Methods of Analysis Volume 4: Biocompatibility, Surface Engineering, and Delivery Of Drugs, Genes and Other Molecules Volume 5: Tissue and Organ Engineering Volume 6: Biomaterials and Clinical Use Experts from around the world in hundreds of related biomaterials areas have contributed to this publication, resulting in a continuum of rich information appropriate for many audiences. The work addresses the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, and strategic insights for those entering and operational in diverse biomaterials applications, research and development, regulatory management, and commercial aspects. From the outset, the goal was to review materials in the context of medical devices and tissue properties, biocompatibility and surface analysis, tissue engineering and controlled release. It was also the intent both, to focus on material properties from the perspectives of therapeutic and diagnostic use, and to address questions relevant to state-of-the-art research endeavors. Full Product DetailsAuthor: Paul Ducheyne (University of Pennsylvania, Philadelphia, USA) , Paul Ducheyne (University of Pennsylvania, Philadelphia, PA, USA) , Kevin Healy (University of California, Berkeley, Berkeley, CA, USA) , Dietmar W. Hutmacher (Queensland University of Technology, Brisbane, QLD, Australia)Publisher: Elsevier Science & Technology Imprint: Elsevier Science Ltd Weight: 12.460kg ISBN: 9780080553023ISBN 10: 0080553028 Pages: 3672 Publication Date: 24 August 2011 Audience: Professional and scholarly , Professional & Vocational Replaced By: 9780081006917 Format: Mixed media product Publisher's Status: Out of Print Availability: Awaiting stock ![]() Table of ContentsApplications and preclinical studies; Biocompatibility; Biological and Tissue Analyses; Biologically Inspired and Biomolecular Materials and Interfaces; Biosensors; Cardiology and Cardiovascular Surgery; Ceramics; Computational Analyses and Modeling; Dentistry, and Oral and Maxillofacial Surgery; In vivo and Ex Vivo Imaging; Inorganic and Hybrid Controlled Release Systems; Mechanical Analysis; Metals; Micro-Fluidics - MEMS; Nanomaterials; Neurology and Neurosurgery; Ophthalmology; Organ Engineering; Orthopaedic Surgery; Polymers; Surface Engineering; Surgery; Systems Biology; Tissue EngineeringReviews<p> In a highly technical and vastly broad subject area, the key to managing (mastering) reputable information and facilitating new breakthroughs is through its preservation and organization by experts in the field. For students or researchers wanting a quick introduction or a working knowledge of an unfamiliar subfield of biomaterials, the assembled chapters will be much more valuable than the typical documents that rise to the top of keyword searches. The authors and editors should be commended for their efforts and congratulated on producing an impressive reference of lasting value. In this reviewer's opinion, it will be an essential reference for any library affiliated with graduate programs in the biomedical sciences. Summing Up: Highly recommended. Upper-division undergraduates and above. -- CHOICE Author InformationPaul Ducheyne is Professor of Bioengineering and Professor of Orthopaedic Surgery Research at the University of Pennsylvania, Philadelphia, USA. He is the Director of its Center for Bioactive Materials and Tissue Engineering. He also is Special Guest Professor at the University of Leuven, Belgium. Paul Ducheyne has Materials Science and Engineering degrees from the K.U. Leuven. Belgium (M.Sc.: 1972; Ph.D.: 1976). With fellowships from the National Institutes of Health (International Postdoctoral Fellowship) and the Belgian American Educational Foundation (Honorary Fellowship), he performed postdoctoral research at the University of Florida. Paul Ducheyne has organized a number of symposia and meetings, such as the Fourth European Conference on Biomaterials (1983), the Engineering Foundation Conference on Bioceramics (1986) which led to the New York Academy of Sciences publication: Bioceramics, material characteristics versus in vivo behavior , and the Sixth International Symposium on Ceramics in Medicine (1993). He has lectured around the world and serves or has served on the editorial board of more than ten scientific journals in the biomaterials, bioceramics, bioengineering, tissue engineering, orthopaedics and dental fields. He has been a member of the editorial board, and then an associate editor of Biomaterials, the leading biomaterials journal, since its inception in the late seventies. He has authored more than 300 papers and chapters in a variety of international journals and books, and he has edited 10 books. He has also been granted more than 40 US patents with international counterparts. His papers have been cited about 7000 times; his ten most visible papers have been cited more than 2000 times. Paul Ducheyne started his career in Europe. While at the K.U. Leuven, Belgium (1977 - 1983), he was one of the co-founders of the Post-Graduate Curriculum in Bioengineering. This program is now a full M.Sc. program in the School of Engineering and Applied Sciences. In those initial years, he was also chairman-founder of the chapter on Biomedical Engineering of the Belgian Engineering Society (Flemish section) and director of Meditek, the Flemish Government body created to promote Academia to Industry Technology Transfer in the area of Biomedical Engineering. Paul Ducheyne founded Gentis, Inc., which focuses on breakthrough concepts for spinal disorders. Previously, he founded Orthovita (NASDAQ: VITA) in 1992 and served as Chairman of its Board of Directors until 1999. Orthovita focuses on bioceramic implant materials for orthopaedics. Paul Ducheyne has been secretary of the European Society for Biomaterials, is Past President of the Society for Biomaterials (USA) and Past President of the International Society for Ceramics in Medicine. He has been recognized as a fellow of the American Association for the Advancement of Science (AAAS), fellow of the American Institute of Medical and Biological Engineering (AIMBE), and fellow of the International Association of Biomaterials Societies. He was the first Nanyang Visiting Professor at the Nanyang Institute of Technology, Singapore and he has received the C. William Hall Award from the Society for Biomaterials. Many of Paul Ducheyne's trainees have become leaders of the next generation. Among his trainees are professors at the University of California at Berkeley, the University of Michigan, Columbia University, Georgia Institute of Technology, the K.U. Leuven (Belgium), etc... Among the six U.S. Associate Editors of the Journal for Biomedical Materials Research (the Journal of the Society for Biomaterials), three were his PhD students. Kevin E. Healy, Ph.D. is the Jan Fandrianto Distinguished Professor in Engineering at the University of California at Berkeley in the Departments of Bioengineering and Materials Science and Engineering. He received a Bachelor of Science degree from the University of Rochester in Chemical Engineering in 1983. In 1985 he received a Masters of Science degree in Bioengineering from the University of Pennsylvania, and in 1990 he received a Ph.D. in Bioengineering also from the University of Pennsylvania. He was elected a Fellow of the American Institute of Medical and Biological Engineering in 2001. He has authored or co-authored more than 200 published articles, abstracts, or book chapters which emphasize the relationship between materials and the tissues they contact. His research interests include the design and synthesis of biomimetic materials that actively direct the fate of embryonic and adult stem cells, and facilitate regeneration of damaged tissues and organs. Major discoveries from his laboratory have centered on the control of cell fate and tissue formation in contract with materials that are tunable in both their biological content and mechanical properties. These materials find applications in medicine, dentistry, and biotechnology. He is currently an Associate Editor of the Journal of Biomedical Materials Research. He has served on numerous panels and grant review study sections for N.I.H. He has given more than 200 invited lectures in the fields of Biomedical Engineering and Biomaterials. He is a named inventor on numerous issued United States and international patents relating to biomaterials, and has founded several companies to develop materials for applications in biotechnology and regenerative medicine. Professor Dietmar W. Hutmacher holds an accomplished international profile and strong research focus in the field of biomaterials, tissue engineering and regenerative medicine. Outcomes from Prof. Hutmacher's research have resulted in high profile scientific and academic contributions as well as patents and commercialization. He was named as one of the world's top materials scientist by Thomson Reuters in 2010 (ranked 45 out of the top 100). Prof. Hutmacher's track record shows that he has successfully mastered the main challenge in the biomedical sciences field, namely to cross traditional boundaries to nurture and initiate research and educational programs across different disciplines, particularly within engineering, biology and medicine. David W. Grainger is the George S. and Dolores Dore Eccles Presidential Endowed Chair in Pharmaceutics and Pharmaceutical Chemistry, Chair of the Department of Pharmaceutics and Pharmaceutical Chemistry, and Professor of Bioengineering at the University of Utah. Grainger received his Ph.D. in Pharmaceutical Chemistry from the University of Utah in 1987 studying blood-compatible polymers, particularly block copolymers functionalized with heparin blocks and their coatings. He then received an Alexander von Humboldt Fellowship to perform postdoctoral research under Prof. Helmut Ringsdorf, University of Mainz, Germany. This training initiated over 25 years of experience with various aspects of developing materials in medicine . Grainger's research expertise is focused on improving implanted medical device performance, drug delivery of new therapeutic proteins, nucleic acids and live vaccines, nanomaterials interactions with human tissues, low-infection biomaterials, and innovating diagnostic devices based on DNA and protein biomarker capture. Additionally, he is an expert in applications of surface analytical methods to biomedical interfaces, including difficult surface patterns and nanomaterials, and perfluorinated biomaterials. Grainger has published over 130 full research papers at the interface of materials innovation in medicine and biotechnology, and novel surface chemistry. He has won research several awards, including the prestigious 2007 Clemson Award for Basic Research, Society for Biomaterials, and the 2005 American Pharmaceutical Research and Manufacturer's Association's award for Excellence in Pharmaceutics . He won a short-term visiting professorship in Tokyo from the Japanese Society for the Promotion of Science, and a CNRS Visiting Professorship in Paris, France. He has also received several teaching awards for outstanding mentoring and teaching service, including the University of Utah 2010 Distinguished Postdoctoral and Graduate Student Mentoring Award, the US West/Qwest Faculty Education Excellence Award (Colorado State University, 2000), Colorado State University College of Natural Sciences Undergraduate Teacher of the Year , 2000, Colorado State University Alumni Association Teacher of the Year , 2002, and several Favorite Faculty Awards from CSU Undergraduate Student Associations. Grainger delivered the EU Madame Curie guest lectures at the Technical University-Aachen, Germany in 2009 and the 15th Annual Fritz Straumann lecture, AO Foundation, Davos, Switzerland, December, 2008. Grainger is an elected Fellow of both the American Association for the Advancement of Science (AAAS) and the American Institute of Medical and Biological Engineering (AIMBE), and Inducted Honorary Fellow, International Union of the Societies of Biomaterials Science and Engineering, 2008. He has organized 23 international scientific symposia including the prestigious Gordon Research Conference in Biomaterials, presented over 320 hundred invited talks all over the world. He serves on editorial boards for 4 major research journals in the biomedical materials field, reviewing over 50 manuscripts annually. He is Chair and standing member of Emerging Bioanalytical Technologies scientific review group (SRG) at NIH, past standing member on the NIH's Surgery and Bioengineering SRG, and over 20 other NIH and NSF review panels, some as chair. Additionally, he serves on the Scientific Advisory Boards of the Univ. Wisconsin-Madison NSF MRSEC on High Performance Nanostructured Materials, the NIH P41 National Research Center at the University of Washington (NESAC/Bio) for surface analysis for biomedical problems, NSF Harvard/New Mexico NSF PREM MRSEC, and several international research foundations (AO Foundation, Davos, Switzerland, Swiss Center for Materials Competence, Zurich, the Willem S. Kolff Institute, Royal University of Groningen, The Netherlands, the Julius Wolfe Musculoskeletal Research Institute at the Charite R C. James Kirkpatrick is currently Professor of Pathology and Chairman of the Institute of Pathology at the Johannes Gutenberg University of Mainz, Germany, having taken up this position in 1993. He is also Honorary Professor at both the Peking Union Medical College, Beijing and the Sichuan University, Chengdu in China. Kirkpatrick is a graduate of the Queen's University of Belfast and holds a triple doctorate in science and medicine (PhD: 1977; MD: 1982; DSc: 1992). Previous appointments were in pathology at the University of Ulm, where he did post-doctoral research in experimental pathology, Manchester University (Lecturer in Histopathology) and the RWTH Aachen (Professor of Pathology & Electron Microscopy). On moving to Aachen in 1987 he established a cell culture laboratory which began using modern methods of cell and molecular biology to study how human cells react to biomaterials. Since then his principal research interests continue to be in the field of biomaterials in tissue engineering and regenerative medicine, with special focus on the development of human cell culture techniques, including novel 3D coculture methodology for biomaterials. His research laboratory, the REPAIR-lab, is a member of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, and his research is principally funded by the EU, BMBF (German Federal Ministry of Education and Research), BMVg (German Federal Ministry of Defence) and the DFG (German Research Foundation). This emphasis on developing sophisticated in vitro techniques has brought him the Research Prize of the State of Rhineland-Palatinate for Research on Replacement and Alternative Methods for Animal Research. In 2010 he received, as first medical graduate, the Chapman Medal from the Institute of Materials, Minerals & Mining in London for distinguished research in the field of biomedical materials . He is author/coauthor of more than 380 publications in peer-reviewed journals and has made more than 1000 presentations to scientific meetings worldwide. He is a former President of both the German Society for Biomaterials (2001-2005) and the European Society for Biomaterials (2002-2007; George Winter Award 2008) and has served on the Council of the latter since 1995. Kirkpatrick is a long-standing member of the Editorial Board of the premier journal Biomaterials and is a current Associate Editor (since 2002). He has also served as Associate Editor of the leading Journal of Pathology (2001-2006). In total, he serves or has served as an Editorial Board member of 18 international journals in pathology, biomaterials and tissue engineering. Kirkpatrick is a member of the Scientific Advisory Board of a number of research institutes, centres of excellence and companies in biomaterials and regenerative medicine in Europe, as well as the Medical Technology Committee, Federal Ministry of Education & Research in Germany (BMBF) (since 2005) and the German Federal Institute for Drugs & Medical Devices (BfArM)(since 2007). During his entire research career, Kirkpatrick has actively practiced diagnostic histopathology, which has allowed him to apply modern molecular pathology techniques to the study of biofunctionality of biomaterials. Since 1997 he is a Fellow of the Royal College of Pathologists, London and since 1995 a Fellow of Biomaterials Science & Engineering (FBSE) of the IUS-BSE (International Union of Societies for Biomaterials Science & Engineering). He is also in a second term of service on the Council of the European Chapter of the Tissue Engineering & Regenerative Medicine International Society (TERMIS-EU). Kirkpatrick had also had the privilege of chairing the Scientific Programme Committee for the 8th World Biomaterials Congress in Amsterdam in 2008. Tab Content 6Author Website:Countries AvailableAll regions |