Completeness and Reduction in Algebraic Complexity Theory

Author:   Peter Bürgisser
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of hardcover 1st ed. 2000
Volume:   7
ISBN:  

9783642086045


Pages:   168
Publication Date:   04 December 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $446.16 Quantity:  
Add to Cart

Share |

Completeness and Reduction in Algebraic Complexity Theory


Add your own review!

Overview

One of the most important and successful theories in computational complex­ ity is that of NP-completeness. This discrete theory is based on the Turing machine model and achieves a classification of discrete computational prob­ lems according to their algorithmic difficulty. Turing machines formalize al­ gorithms which operate on finite strings of symbols over a finite alphabet. By contrast, in algebraic models of computation, the basic computational step is an arithmetic operation (or comparison) of elements of a fixed field, for in­ stance of real numbers. Hereby one assumes exact arithmetic. In 1989, Blum, Shub, and Smale [12] combined existing algebraic models of computation with the concept of uniformity and developed a theory of NP-completeness over the reals (BSS-model). Their paper created a renewed interest in the field of algebraic complexity and initiated new research directions. The ultimate goal of the BSS-model (and its future extensions) is to unite classical dis­ crete complexity theory with numerical analysis and thus to provide a deeper foundation of scientific computation (cf. [11, 101]). Already ten years before the BSS-paper, Valiant [107, 110] had proposed an analogue of the theory of NP-completeness in an entirely algebraic frame­ work, in connection with his famous hardness result for the permanent [108]. While the part of his theory based on the Turing approach (#P-completeness) is now standard and well-known among the theoretical computer science com­ munity, his algebraic completeness result for the permanents received much less attention.

Full Product Details

Author:   Peter Bürgisser
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of hardcover 1st ed. 2000
Volume:   7
Dimensions:   Width: 15.50cm , Height: 0.90cm , Length: 23.50cm
Weight:   0.454kg
ISBN:  

9783642086045


ISBN 10:   3642086047
Pages:   168
Publication Date:   04 December 2010
Audience:   Professional and scholarly ,  Professional and scholarly ,  Professional & Vocational ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Introduction.- 2 Valiant’s Algebraic Model of NP-Completeness.- 3 Some Complete Families of Polynomials.- 4 Cook’s versus Valiant’s Hypothesis.- 5 The Structure of Valiant’s Complexity Classes.- 6 Fast Evaluation of Representations of General Linear Groups.- 7 The Complexity of Immanants.- 8 Separation Results and Future Directions.- References.- List of Notation.

Reviews

... The subject matter of the book is not easy, since it involves prerequisites from several areas, among them complexity theory, combinatorics, analytic number theory, and representations of symmetric and general linear groups. But the author goes to great lengths to motivate his results, to put them into perspective, and to explain the proofs carefully. In summary, this monograph advances its area of algebraic complexity theory, and is a must for people for working on this subject. And it is a pleasure to read. Joachim von zur Gathen, Mathematical Reviews, Issue 2001g


... The subject matter of the book is not easy, since it involves prerequisites from several areas, among them complexity theory, combinatorics, analytic number theory, and representations of symmetric and general linear groups. But the author goes to great lengths to motivate his results, to put them into perspective, and to explain the proofs carefully. In summary, this monograph advances its area of algebraic complexity theory, and is a must for people for working on this subject. And it is a pleasure to read. Joachim von zur Gathen, Mathematical Reviews, Issue 2001g


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List