Compilers and Operating Systems for Low Power

Author:   Luca Benini ,  Mahmut Kandemir ,  J. Ramanujam
Publisher:   Springer-Verlag New York Inc.
Edition:   Illustrated edition
ISBN:  

9781402075735


Pages:   223
Publication Date:   30 September 2003
Format:   Hardback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $469.92 Quantity:  
Add to Cart

Share |

Compilers and Operating Systems for Low Power


Add your own review!

Overview

This volume focuses on both application-level, compiler-directed energy optimization and low-power operating systems. Chapters have been written exclusively for this volume by several of the leading researchers and application developers active in the field. The first six chapters focus on low-energy operating systems, or more in general, energy-aware middleware services. The next five chapters are centred on compilation and code optimization. Finally, the last chapter takes a more general viewpoint on mobile computing. The material demonstrates the state-of-the-art work and proves that to obtain the best energy/performance characteristics, compilers, system software, and architecture must work together. The relationship between energy-aware middleware and wireless microsensors, mobile computing and other wireless applications is covered.

Full Product Details

Author:   Luca Benini ,  Mahmut Kandemir ,  J. Ramanujam
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Illustrated edition
Dimensions:   Width: 15.50cm , Height: 1.50cm , Length: 23.50cm
Weight:   1.190kg
ISBN:  

9781402075735


ISBN 10:   1402075731
Pages:   223
Publication Date:   30 September 2003
Audience:   General/trade ,  Professional and scholarly ,  College/higher education ,  General ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

1 Low Power Operating System for Heterogeneous Wireless Communication System.- 1 Introduction.- 2 Event-driven versus General-purpose OS.- 3 Low Power Reactive OS for Heterogeneous Architectures.- 4 Conclusion and Future Work.- References.- 2 A Modified Dual-Priority Scheduling Algorithm for Hard Real-Time Systems to Improve Energy Savings.- 1 Introduction.- 2 Dual-Priority Scheduling.- 3 Power-Low Modified Dual-Priority Scheduling.- 4 Experimental Results.- 5 Summary.- References.- 3 Toward the Placement of Power Management Points in Real-Time Applications.- 1 Introduction.- 2 Model.- 3 Sources of Overhead.- 4 Speed Adjustment Schemes.- 5 Optimal Number of PMPs.- 6 Conclusion.- Appendix: Derivation of Formulas.- References.- 4 Energy Characterization of Embedded Real-Time Operating Systems.- 1 Introduction.- 2 Related Work.- 3 System Overview.- 4 Characterization Strategy.- 5 RTOS Characterization Results.- Summary of Findings.- Conclusions.- References.- 5 Dynamic Cluster Reconfiguration for Power and Performance.- 1 Motivation.- 2 Cluster Configuration and Load Distribution.- Methodology.- Experimental Results.- Related Work.- Conclusions.- References.- 6 Energy Management of Virtual Memory on Diskless Devices.- 1 Introduction.- 2 Related Work.- 3 Problem Formulation.- 4 EELRM Prototype Compiler.- 5 Experiments.- 6 Future Work.- 7 Conclusion.- References.- 7 Propagating Constants Past Software to Hardware Peripherals on Fixed-Application Embedded Systems.- 1 Introduction.- 2 Example.- 3 Parameters in Cores.- 4 Propagating Constants from Software to Hardware.- 5 Experiments.- 6 Future Work.- 7 Conclusions.- References.- 8 Constructive Timing Violation for Improving Energy Efficiency.- 1 Introduction.- 2 Low Power via Fault-Tolerance.- 3 Evaluation Methodology.- 4 Simulation Results.- 5 Related Work.- 6 Conclusion and Future Work.- References.- 9 Power Modeling and Reduction of VLIW Processors.- 1 Introduction.- 2 Cycle-Accurate VLIW Power Simulation.- 3 Clock Ramping.- 4 Experimental Results.- 5Conclusions and Discussion.- References.- 10 Low-Power Design of Turbo Decoder with Exploration of Energy-Throughout Trade-off.- 1 Introduction.- 2 Data Transfer and Storage Exploration Methodology.- 3 Global Data Flow and Loop Transformations.- 4 Storage Cycle Budget Distribution.- 5 Memory Organization.- 6 Conclusions.- References.- 11 Static Analysis of Parameterized Loop Nests for Energy Efficient Use of Data Caches.- 1 Introduction.- 2 Energy and Line Size.- 3 Background.- 4 The Parameterized Loop Analysis.- 5 STAMINA Implementation Results.- 6 Summary and Future Work.- References.- 12 A Fresh Look at Low-Power Mobile Computing.- 1 Introduction.- 2 Architecture.- 3 Handover and the Quantization of Computational Resources.- 4 Segmentation of Functionality: The XU-MS Split.- 5 Status and Research Vision.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List