|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Jerome K. PercusPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 1971 Volume: 4 Dimensions: Width: 17.80cm , Height: 1.10cm , Length: 25.40cm Weight: 0.820kg ISBN: 9780387900278ISBN 10: 0387900276 Pages: 194 Publication Date: 01 December 1971 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI. Counting and Enumeration on a Set.- A. Introduction.- 1. Set Generating Functions.- 2. Numerical Generating Functions.- Examples.- Fibonacci Numbers.- B. Counting with Restrictions - Techniques.- 1. Inclusion - Exclusion Principle.- The Euler Function.- Rencontres, Derangement or Montmort Problem.- The Menage Problem.- 2. Permutations with Restricted Position. The Master Theorem.- Exercises.- Example.- Rencontre Problem.- Menage Problem.- 3. Extension of the Master Theorem.- C. Partitions, Compositions and Decompositions.- 1. Permutation Counting as a Partition Problem.- a) Counting with allowed transitions.- b) Counting with prohibited transitions.- 2. Classification of Partitions.- a) Distribution of unlabeled objects: Compositions.- b) Distribution of unlabeled objects: Partitions.- 3. Ramsey's Theorem.- Example.- 4. Distribution of Labeled Objects.- a) Distinguishable boxes.- b) Collections of pairs - graph theory.- c) Indistinguishable boxes (and labeled objects).- d) Partially labeled graphs - The Polya Theorem.- Examples.- Proof of Polya's Theorem.- Examples.- Exercises.- e) Counting unrooted (free) unlabeled graphs.- Dissimilarity Theorem.- Example.- II. Counting and Enumeration on a Regular Lattice.- A. Random Walk on Lattices.- 1. Regular Cubic Lattices.- Examples.- 2. General Lattices.- i) Nearest neighbor random walk on a face centered cubic lattice.- ii) Nearest neighbor random walk on a body centered cubic lattice.- B. One Dimensional Lattices.- 1. The Ballot Problem.- Example.- 2. One Dimensional Lattice Gas.- C. Two Dimensional Lattices.- 1. Counting Figures on a Lattice, General Algebraic Approach.- 2. The Dimer Problem - Transfer Matrix Method.- Exercises.- 3. The Dimer Problem - Pfaffian Method.- Exercises.- 4. The Dimer Problem - First Permanent Method.- 5. The Dimer Problem - Second Permanent Method.- D. Counting Patterns on Two Dimensional Lattices.- 1. The Ice Problem - Introduction.- 2. Square Ice - The Transfer Matrix Method.- 3. Square Ice - Exact Solution.- 4. Other Hydrogen Bonded Models - Dimer Solution.- E. The Ising Model.- 1. Introduction.- 2. Estimates of the Curie Temperature.- 3. Combinatorial Solution of the Ising Model.- 4. Other Combinatorial Solutions.- 5. Spin Correlations.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |