CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications

Author:   Paul Muller ,  Yusuf Leblebici
Publisher:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 2007
ISBN:  

9789048174737


Pages:   191
Publication Date:   23 November 2010
Format:   Paperback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $419.76 Quantity:  
Add to Cart

Share |

CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications


Add your own review!

Overview

The intention of this book is to address a number of timely, performance-critical issues within the field of short-distance optical communications, from a circuit designer’s perspective. It discusses the major trade-offs the designer has to deal with in the development of monolithically integrated receivers in CMOS technologies. As such, it is based on Dr. Muller’s doctoral dissertation entitled “A Standard CMOS Multi-Channel Single-Chip Receiver for Multi-Gigabit Optical Data Communications”, subm- ted to the School of Engineering of the École Polytechnique Fédérale de Lausanne (EPFL) in May 2006. The dissertation material has been enhanced by the presentation of a number of alternative design approaches and circuit topologies, providing exhaustive coverage of the state of the art in optical sho- distance receiver circuit design. The need for a new processor input/output (I/O) interface paradigm is dictated by ongoing te- nology scaling and the advent of multi-core systems. Indeed, each new generation of microprocessors and digital signal processors provides higher computing power and data throughput, whereas the available bandwidth of the I/O interfaces is subject to much slower growth. Moving beyond - coming serial links to an optical data link paradigm for very short-distance (board-to-board and chip-- chip communications allows for considerable I/O interface bandwidth enhancement. Fully integrated silicon CMOS receivers are considered to be the technology of choice to lead this solution to economic success, because monolithic integration results in lower volume-manufacturing cost, improved yield and reduced assembly and test expenses.

Full Product Details

Author:   Paul Muller ,  Yusuf Leblebici
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 2007
Dimensions:   Width: 15.50cm , Height: 1.10cm , Length: 23.50cm
Weight:   0.454kg
ISBN:  

9789048174737


ISBN 10:   9048174732
Pages:   191
Publication Date:   23 November 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

About the Authors. Foreword. Table of Contents. Constants, Symbols and Acronyms. CHAPTER 1 Introduction. CHAPTER 2 Integrated Photonic Systems. 2.1 Long-Haul Communication Links. 2.2 Metropolitan-Area Networks. 2.3 Local Area Networks and Short-Distance Interconnects. 2.4 Optical Backplane Technology. 2.5 Optical on-chip interconnects. CHAPTER 3 Basic Concepts. 3.1 Modulation of Optical and Electrical Signals. 3.2 NRZ Random Data. 3.3 Clock Recovery Basics. 3.4 Bit Error Rate. 3.5 System Bandwidth and Inter-Symbol Interference. 3.6 Amplitude Noise. 3.7 Jitter. 3.8 Multi-Channel Systems. 3.9 Definition of Transistor-Level Conventions. CHAPTER 4 System-Level Specifications. 4.1 Technology. 4.2 System-Level Requirements. 4.3 Receiver System Specifications. 4.4 Sub-Block Parameters. 4.5 Transimpedance Amplifier Analysis. 4.6 System Gain and Bandwidth Specifications. 4.7 Bit Error Rate Evaluation. 4.8 Block Specification Flow. CHAPTER 5 Pure Silicon Photodetector. 5.1 Photodetection. 5.2 PIN Photodiodes. 5.3 Avalanche Photodiodes. 5.4 Resonant Cavity Enhanced Detectors. 5.5 Conclusion. CHAPTER 6 Transimpedance Amplifier Design. 6.1 Principles of I-V Conversion. 6.2 Transimpedance Amplifier Topologies. 6.3 Specifications. 6.4 Transimpedance Amplifier Design. 6.5 Simulation Results. 6.6 Block Layout. 6.7 Measurement Results. 6.8 Discussion. CHAPTER 7 Limiting Amplifier Design. 7.1 Principles of Signal Limiting. 7.2 Simple Limiting Amplifier Topologies. 7.3 Bandwidth Enhancement in Limiting Amplifiers. 7.4 Specifications. 7.5 Inductorless Limiting Amplifier Design. 7.6 Design of an Inductive Peaking Limiting Amplifier. 7.7 Complete Limiting Amplifier. 7.8 Simulation Results. 7.9 Block Layout. 7.10 Measurement Results. 7.11 Discussion. CHAPTER 8 Clock and Data Recovery Circuit. 8.1 Clock Recovery Principles. 8.2 CDR Topologies. 8.3 Topology Discussion. 8.4 Specifications. 8.5 The Gated Oscillator Topology. 8.6 Statistical Modeling of the Gated Oscillator. 8.7 Time-Domain Modeling. 8.8 Transistor-Level Design. 8.9 Measurement Results. 8.10 Conclusion. CHAPTER 9 Conclusions. References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List