|
![]() |
|||
|
||||
OverviewWith a DVD of color figures, Clustering in Bioinformatics and Drug Discovery provides an expert guide on extracting the most pertinent information from pharmaceutical and biomedical data. It offers a concise overview of common and recent clustering methods used in bioinformatics and drug discovery. Setting the stage for subsequent material, the first three chapters of the book introduce statistical learning theory, exploratory data analysis, clustering algorithms, different types of data, graph theory, and various clustering forms. In the following chapters on partitional, cluster sampling, and hierarchical algorithms, the book provides readers with enough detail to obtain a basic understanding of cluster analysis for bioinformatics and drug discovery. The remaining chapters cover more advanced methods, such as hybrid and parallel algorithms, as well as details related to specific types of data, including asymmetry, ambiguity, validation measures, and visualization. This book explores the application of cluster analysis in the areas of bioinformatics and cheminformatics as they relate to drug discovery. Clarifying the use and misuse of clustering methods, it helps readers understand the relative merits of these methods and evaluate results so that useful hypotheses can be developed and tested. Full Product DetailsAuthor: John David MacCuish (Mesa Analytics & Computing, Inc., Santa Fe, New Mexico, USA) , Norah E. MacCuish (Mesa Analytics & Computing, Inc., Santa Fe, New Mexico, USA)Publisher: Taylor & Francis Inc Imprint: CRC Press Inc Volume: v. 40 Dimensions: Width: 15.60cm , Height: 1.80cm , Length: 23.40cm Weight: 0.498kg ISBN: 9781439816783ISBN 10: 1439816786 Pages: 244 Publication Date: 15 November 2010 Audience: College/higher education , General/trade , Tertiary & Higher Education , General Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsIntroduction. Data. Clustering Forms. Partitional Algorithms. Cluster Sampling Algorithms. Hierarchical Algorithms. Hybrid Algorithms. Asymmetry. Ambiguity. Validation. Large Scale and Parallel Algorithms. Appendices. Bibliography.ReviewsJohn trained in computer science and has been involved with data mining and statistical analysis; Norah trained as a theoretical physical chemist and has mostly worked for pharmaceutical companies on drug discovery. They run a company that merges their fields, and it is that overlap that they describe here. They explain how cluster analysis, an exploratory data analysis tool, is used in bioinformatics and cheminformatics as they relate to drug discovery. The goal is for practitioners to be aware of the relative merits of clustering methods with the data they have at hand. --SciTech Book News, February 2011 ! In this volume, the authors present sufficient options so that the user can choose the appropriate method for their data. ! Practitioners in the pharmaceutical industry need an expert guide, which the authors of this book provide, to extract the most information from their data. Those of us who learned their clustering from Anderberg, Sokal and Sneath, and Willett now have a valuable additional resource suitable for the 21st century. --From the Foreword by John Bradshaw, Barley, Hertfordshire, UK ! In this volume, the authors present sufficient options so that the user can choose the appropriate method for their data. ! Practitioners in the pharmaceutical industry need an expert guide, which the authors of this book provide, to extract the most information from their data. Those of us who learned their clustering from Anderberg, Sokal and Sneath, and Willett now have a valuable additional resource suitable for the 21st century. --From the Foreword by John Bradshaw, Barley, Hertfordshire, UK Author InformationJohn D. MacCuish is the founder and president of Mesa Analytics & Computing, Inc. He has co-authored several software patents and has worked on many image processing, data mining, and statistical modeling applications, including IRS fraud detection, credit card fraud detection, and automated reasoning systems for drug discovery. Norah E. MacCuish is the chief science officer of Mesa Analytics & Computing, Inc., where she acts as a consultant in the areas of drug design and compound acquisition and as a developer of commercial chemical information software products. She earned her Ph.D. in theoretical physical chemistry from Cornell University. Tab Content 6Author Website:Countries AvailableAll regions |