|
![]() |
|||
|
||||
OverviewThis brief covers novel techniques for clean hydrogen production which primarily involve sodium hydroxide as an essential ingredient to the existing major hydrogen production technologies. Interestingly, sodium hydroxide plays different roles and can act as a catalyst, reactant, promoter or even a precursor. The inclusion of sodium hydroxide makes these processes both kinetically and thermodynamically favorable. In addition possibilities to produce cleaner hydrogen, in terms of carbon emissions, are described. Through modifications of steam methane reformation methods and coal-gasification processes, from fossil as well as non-fossil energy sources, the carbon dioxide emissions of these established ways to produce hydrogen can significantly be reduced. This brief is aimed at those who are interested in expanding their knowledge on novel techniques and materials to produce clean hydrogen and capture carbon dioxide at a large-scale. The detailed thermodynamic analysis, experimental findings and critical analysis of such techniques are well discussed in this brief. Therefore, this book will be of great interest and use to students, engineers and researchers involved in developing the hydrogen economy as well as mitigating carbon dioxide emissions at a large-scale. Full Product DetailsAuthor: Sushant KumarPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 2015 ed. Dimensions: Width: 15.50cm , Height: 0.40cm , Length: 23.50cm Weight: 1.358kg ISBN: 9783319140865ISBN 10: 3319140868 Pages: 66 Publication Date: 14 January 2015 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Tertiary & Higher Education Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationSushant Kumar is currently working as a Postdoctoral Scholar at the Nanoparticles by Design Unit (Okinawa Institute of Science and Technology, Japan). He earned his PhD from the Department of Mechanical and Materials Engineering at Florida International University in 2013. Prior to this, he has received his Bachelor’s degree in Chemical Technology from UDCT, India in 2009. His current research interests include clean hydrogen production, carbon dioxide capture and utilization and solid state hydrogen storage. He is an honorary member of National Academy of Inventors, USA. He has successfully applied for one US Provisional Patent (as Primary inventor) and published several peer-reviewed journal articles. Moreover, he has also been the recipient of Dissertation Evidence Acquisition Fellowship and Dissertation Year Fellowship from Florida International University. Tab Content 6Author Website:Countries AvailableAll regions |