|
![]() |
|||
|
||||
OverviewIn 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic. Full Product DetailsAuthor: Kazuya Kato , Sampei UsuiPublisher: Princeton University Press Imprint: Princeton University Press Volume: 183 Dimensions: Width: 15.20cm , Height: 2.50cm , Length: 23.50cm Weight: 0.595kg ISBN: 9780691138220ISBN 10: 0691138222 Pages: 352 Publication Date: 07 December 2008 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Language: English Table of ContentsReviewsThe book ... is well and carefully written and even a beginner can learn a lot from it... It is a nice book and can be strongly recommended. European Mathematical Society Newsletter The book ... is well and carefully written and even a beginner can learn a lot from it... It is a nice book and can be strongly recommended. -- European Mathematical Society Newsletter ""The book ... is well and carefully written and even a beginner can learn a lot from it... It is a nice book and can be strongly recommended.""--European Mathematical Society Newsletter Author InformationKazuya Kato is professor of mathematics at Kyoto University. Sampei Usui is professor of mathematics at Osaka University. Tab Content 6Author Website:Countries AvailableAll regions |