|
![]() |
|||
|
||||
OverviewA classification is given of certain separable nuclear C*-algebras not necessarily of real rank zero, namely, the class of simple C*-algebras which are inductive limits of continuous trace C*-algebras whose building blocks have spectrum homeomorphic to the closed interval [0,1]. In particular, a classification of simple stably AI algebras is obtained. Also, the range of the invariant is calculated. We start by approximating the building blocks appearing in a given inductive limit decomposition by certain special building blocks. The special building blocks are continuous trace C*-algebras with finite dimensional irreducible representations and such that the dimension of the representations, as a function on the interval, is a finite (lower semicontinuous) step function. It is then proved that these C*-algebras have finite presentations and stable relations. The advantage of having inductive limits of special subhomogeneous algebras is that we can prove the existence of certain gaps for the induced maps between the affine function spaces. These gaps are necessary to prove the Existence Theorem. Also the Uniqueness theorem is proved for these special building blocks. Full Product DetailsAuthor: Cristian IvanescuPublisher: LAP Lambert Academic Publishing Imprint: LAP Lambert Academic Publishing Dimensions: Width: 15.20cm , Height: 0.50cm , Length: 22.90cm Weight: 0.141kg ISBN: 9783838303253ISBN 10: 3838303253 Pages: 88 Publication Date: 17 June 2009 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |