|
![]() |
|||
|
||||
OverviewThis book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of MAbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry. Full Product DetailsAuthor: Walter BenzPublisher: Springer Imprint: Springer Dimensions: Width: 24.40cm , Height: 1.50cm , Length: 17.00cm Weight: 0.467kg ISBN: 9783764392222ISBN 10: 3764392223 Pages: 292 Publication Date: 30 August 2008 Audience: General/trade , General Format: Undefined Publisher's Status: Unknown Availability: Out of stock ![]() Table of ContentsReviewsThis book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X Euclidean, hyperbolic translations and distances, respectively, are characterized. For these spaces X also the sphere geometries of MAbius and Lie are studied besides Euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizng isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry. <p>-- L'Enseignement MathA(c)matique Author InformationTab Content 6Author Website:Countries AvailableAll regions |