Chemical, Biochemical, and Engineering Thermodynamics

Author:   Stanley I. Sandler (University of Delaware)
Publisher:   John Wiley & Sons Inc
Edition:   5th edition
ISBN:  

9780470504796


Pages:   1040
Publication Date:   20 August 2020
Format:   Paperback
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Our Price $150.25 Quantity:  
Add to Cart

Share |

Chemical, Biochemical, and Engineering Thermodynamics


Add your own review!

Overview

In this newly revised 5th Edition of Chemical and Engineering Thermodynamics, Sandler presents a modern, applied approach to chemical thermodynamics and provides sufficient detail to develop a solid understanding of the key principles in the field. The text confronts current information on environmental and safety issues and how chemical engineering principles apply in biochemical engineering, bio-technology, polymers, and solid-state-processing. This book is appropriate for the undergraduate and graduate level courses.

Full Product Details

Author:   Stanley I. Sandler (University of Delaware)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Edition:   5th edition
Dimensions:   Width: 20.30cm , Height: 4.30cm , Length: 25.20cm
Weight:   1.814kg
ISBN:  

9780470504796


ISBN 10:   047050479
Pages:   1040
Publication Date:   20 August 2020
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Table of Contents

Chapter 1 Introduction 1 Instructional Objectives for Chapter 1 3 Important Notation Introduced in This Chapter 4 1.1 The Central Problems of Thermodynamics 4 1.2 A System of Units 5 1.3 The Equilibrium State 7 1.4 Pressure, Temperature, and Equilibrium 10 1.5 Heat, Work, and the Conservation of Energy 15 1.6 Specification of the Equilibrium State; Intensive and Extensive Variables; Equations of State 18 1.7 A Summary of Important Experimental Observations 21 1.8 A Comment on the Development of Thermodynamics 23 Problems 23 Chapter 2 Conservation of Mass 25 Instructional Objectives for Chapter 2 25 Important Notation Introduced in This Chapter 26 2.1 A General Balance Equation and Conserved Quantities 26 2.2 Conservation of Mass for a Pure Fluid 30 2.3 The Mass Balance Equations for a Multicomponent System with a Chemical Reaction 35 2.4 The Microscopic Mass Balance Equations in Thermodynamics and Fluid Mechanics (Optional - only on the website for this book) 43 Problems 44 Chapter 3 Conservation of Energy 45 Instructional Objectives for Chapter 3 46 Notation Introduced in This Chapter 46 3.1 Conservation of Energy 47 3.2 Several Examples of Using the Energy Balance 54 3.3 The Thermodynamic Properties of Matter 59 3.4 Applications of the Mass and Energy Balances 69 3.5 Conservation of Momentum 93 3.6 The Microscopic Energy Balance (Optional - only on website for this book) 93 Problems 93 Chapter 4 Entropy: An Additional Balance Equation 99 Instructional Objectives for Chapter 4 99 Notation Introduced in This Chapter 100 4.1 Entropy: A New Concept 100 4.2 The Entropy Balance and Reversibility 108 4.3 Heat, Work, Engines, and Entropy 114 4.4 Entropy Changes of Matter 125 4.5 Applications of the Entropy Balance 128 4.6 Availability and the Maximum Useful Shaft Work that can be obtained In a Change of State 140 4.7 The Microscopic Entropy Balance (Optional - only on website for this book) 145 Problems 145 Chapter 5 Liquefaction, Power Cycles, and Explosions 152 Instructional Objectives for Chapter 5 152 Notation Introduced in this Chapter 152 5.1 Liquefaction 153 5.2 Power Generation and Refrigeration Cycles 158 5.3 Thermodynamic Efficiencies 181 5.4 The Thermodynamics of Mechanical Explosions 185 Problems 194 Chapter 6 The Thermodynamic Properties of Real Substances 200 Instructional Objectives for Chapter 6 200 Notation Introduced in this Chapter 201 6.1 Some Mathematical Preliminaries 201 6.2 The Evaluation of Thermodynamic Partial Derivatives 205 6.3 The Ideal Gas and Absolute Temperature Scales 219 6.4 The Evaluation of Changes in the Thermodynamic Properties of Real Substances Accompanying a Change of State 220 6.5 An Example Involving the Change of State of a Real Gas 245 6.6 The Principle of Corresponding States 250 6.7 Generalized Equations of State 263 6.8 The Third Law of Thermodynamics 267 6.9 Estimation Methods for Critical and Other Properties 268 6.10 Sonic Velocity 272 6.11 More About Thermodynamic Partial Derivatives (Optional - only on website for this book) 275 Problems 275 Chapter 7 Equilibrium and Stability in One-Component Systems 285 Instructional Objectives for Chapter 7 285 Notation Introduced in This Chapter 285 7.1 The Criteria for Equilibrium 286 7.2 Stability of Thermodynamic Systems 293 7.3 Phase Equilibria: Application of the Equilibrium and Stability Criteria to the Equation of State 300 7.4 The Molar Gibbs Energy and Fugacity of a Pure Component 307 7.5 The Calculation of Pure Fluid-Phase Equilibrium: The Computation of Vapor Pressure from an Equation of State 322 7.6 Specification of the Equilibrium Thermodynamic State of a System of Several Phases: The Gibbs Phase Rule for a One-Component System 330 7.7 Thermodynamic Properties of Phase Transitions 334 7.8 Thermodynamic Properties of Small Systems, or Why Subcooling and Superheating Occur 341 Problems 344 Chapter 8 The Thermodynamics of Multicomponent Mixtures 353 Instructional Objectives for Chapter 8 353 Notation Introduced in this chapter 353 8.1 The Thermodynamic Description of Mixtures 354 8.2 The Partial Molar Gibbs Energy and the Generalized Gibbs-Duhem Equation 363 8.3 A Notation for Chemical Reactions 367 8.4 The Equations of Change for a Multicomponent System 370 8.5 The Heat of Reaction and a Convention for the Thermodynamic Properties of Reacting Mixtures 378 8.6 The Experimental Determination of the Partial Molar Volume and Enthalpy 385 8.7 Criteria for Phase Equilibrium in Multicomponent Systems 396 8.8 Criteria for Chemical Equilibrium, and Combined Chemical and Phase Equilibrium 399 8.9 Specification of the Equilibrium Thermodynamic State of a Multicomponent, Multiphase System; the Gibbs Phase Rule 404 8.10 A Concluding Remark 408 Problems 408 Chapter 9 Estimation of The Gibbs Energy and Fugacity of A Component in a Mixture 416 Instructional Objectives for Chapter 9 416 Notation Introduced in this Chapter 417 9.1 The Ideal Gas Mixture 417 9.2 The Partial Molar Gibbs Energy and Fugacity 421 9.3 Ideal Mixture and Excess Mixture Properties 425 9.4 Fugacity of Species in Gaseous, Liquid, and Solid Mixtures 436 9.5 Several Correlative Liquid Mixture Activity Coefficient Models 446 9.6 Two Predictive Activity Coefficient Models 460 9.7 Fugacity of Species in Nonsimple Mixtures 468 9.8 Some Comments on Reference and Standard States 478 9.9 Combined Equation-of-State and Excess Gibbs Energy Model 479 9.10 Electrolyte Solutions 482 9.11 Choosing the Appropriate Thermodynamic Model 490 Appendix A9.1 A Statistical Mechanical Interpretation of the Entropy of Mixing in an Ideal Mixture (Optional – only on the website for this book) 493 Appendix A9.2 Multicomponent Excess Gibbs Energy (Activity Coefficient) Models 493 Appendix A9.3 The Activity Coefficient of a Solvent in an Electrolyte Solution 495 Problems 499 Chapter 10 Vapor-Liquid Equilibrium in Mixtures 507 Instructional Objectives for Chapter 10 507 Notation Introduced in this Chapter 508 10.0 Introduction to Vapor-Liquid Equilibrium 508 10.1 Vapor-Liquid Equilibrium in Ideal Mixtures 510 Problems for Section 10.1 536 10.2 Low-Pressure Vapor-Liquid Equilibrium in Nonideal Mixtures 538 Problems for Section 10.2 568 10.3 High-Pressure Vapor-Liquid Equilibria Using Equations of State (φ-φ Method) 578 Problems for Section 10.3 595 Chapter 11 Other Types of Phase Equilibria in Fluid Mixtures 599 Instructional Objectives for Chapter 11 599 Notation Introduced in this Chapter 600 11.1 The Solubility of a Gas in a Liquid 600 Problems for Section 11.1 615 11.2 Liquid-Liquid Equilibrium 617 Problems for Section 11.2 646 11.3 Vapor-Liquid-Liquid Equilibrium 652 Problems for Section 11.3 661 11.4 The Partitioning of a Solute Among Two Coexisting Liquid Phases; The Distribution Coefficient 665 Problems for Section 11.4 675 11.5 Osmotic Equilibrium and Osmotic Pressure 677 Problems for Section 11.5 684 Chapter 12 Mixture Phase Equilibria Involving Solids 688 Instructional Objectives for Chapter 12 688 Notation Introduced in this Chapter 688 12.1 The Solubility of a Solid in a Liquid, Gas, or Supercritical Fluid 689 Problems for Section 12.1 699 12.2 Partitioning of a Solid Solute Between Two Liquid Phases 701 Problems for Section 12.2 703 12.3 Freezing-Point Depression of a Solvent Due to the Presence of a Solute; the Freezing Point of Liquid Mixtures 704 Problems for Section 12.3 709 12.4 Phase Behavior of Solid Mixtures 710 Problems for Section 12.4 718 12.5 The Phase Behavior Modeling of Chemicals in the Environment 720 Problems for Section 12.5 726 12.6 Process Design and Product Design 726 Problems for Section 12.6 732 12.7 Concluding Remarks on Phase Equilibria 732 Chapter 13 Chemical Equilibrium 734 Instructional Objectives for Chapter 13 734 Important Notation Introduced in This Chapter 734 13.1 Chemical Equilibrium in a Single-Phase System 735 13.2 Heterogeneous Chemical Reactions 768 13.3 Chemical Equilibrium When Several Reactions Occur in a Single Phase 781 13.4 Combined Chemical and Phase Equilibrium 791 13.5 Ionization and the Acidity of Solutions 799 13.6 Ionization of Biochemicals 817 13.7 Partitioning of Amino Acids and Proteins Between Two Liquids 831 Problems 834 Chapter 14 The Balance Equations For Chemical Reactors, Availability, and Electrochemistry 848 Instructional Objectives for Chapter 14 848 Notation Introduced in this Chapter 849 14.1 The Balance Equations for a Tank-Type Chemical Reactor 849 14.2 The Balance Equations for a Tubular Reactor 857 14.3 Overall Reactor Balance Equations and the Adiabatic Reaction Temperature 860 14.4 Thermodynamics of Chemical Explosions 869 14.5 Maximum Useful Work and Availability in Chemically Reacting Systems 875 14.6 Introduction to Electrochemical Processes 882 14.7 Fuel Cells and Batteries 891 Problems 897 Chapter 15 Some Additional Biochemical Applications of Thermodynamics 900 Instructional Objectives for Chapter 15 900 Notation Introduced in this Chapter 901 15.1 Solubilities of Weak Acids, Weak Bases, and Amino Acids as a Function of pH 901 15.2 The Solubility of Amino Acids and Proteins as a function of Ionic Strength and Temperature 911 15.3 Binding of a Ligand to a Substrate 917 15.4 Some Other Examples of Biochemical Reactions 922 15.5 The Denaturation of Proteins 925 15.6 Coupled Biochemical Reactions: The ATP-ADP Energy Storage and Delivery Mechanism 932 15.7 Thermodynamic Analysis of Fermenters and Other Bioreactors 937 15.8 Gibbs-Donnan Equilibrium and Membrane Potentials 960 15.9 Protein Concentration in an Ultracentrifuge 967 Problems 970 Appendix A Thermodynamic Data 973 Appendix A.I Conversion Factors for SI Units 973 Appendix A.II The Molar Heat Capacities of Gases in the Ideal Gas (Zero Pressure) State 974 Appendix A.III The Thermodynamic Properties of Water and Steam 977 Appendix A.IV Enthalpies and Free Energies of Formation 987 Appendix A.V Heats of Combustion 990 Appendix B Brief Descriptions of Computer Aids for Use with This Book 992 Appendix B (On Website Only) Descriptions of Computer Programs and Computer Aids for Use with This Book B1 Appendix B.I Windows-based Visual Basic Programs B1 Appendix B.II DOS-based Basic Programs B9 Appendix B.III MATHCAD Worksheets B12 Appendix B.IV MATLAB Programs B14 Appendix C Aspen Illustration Input Files. These are on The Website for This Book 994 Appendix D Answers To Selected Problems 995 Index 998

Reviews

Author Information

STANLEY I. SANDLER is the H. B. du Pont Professor of Chemical Engineering at the University of Delaware as well as professor of chemistry and biochemistry. He is also the founding director of its Center for Molecular and Engineering Thermodynamics. In addition to this book, Sandler is the author of 235 research papers and a monograph, and is the editor of a book on thermodynamic modeling and five conference proceedings. He earned his B.Ch.E. degree in 1962 from the City College of New York, and his Ph.D. in chemical engineering from the University of Minnesota in 1966.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List