|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Monte Willis, MD, PhD (University of North Carolina, Chapel Hill, NC, USA) , Jonathon W. Homeister (University of North Carolina, Chapel Hill, USA) , James R. Stone (Harvard Medical School, Boston, MA, USA)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc Dimensions: Width: 21.60cm , Height: 2.00cm , Length: 27.60cm Weight: 1.170kg ISBN: 9780124052062ISBN 10: 0124052061 Pages: 338 Publication Date: 06 March 2014 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsThe images and illustration quality are exceptional, with a plethora of molecular and biochemical information related to each topic. Readers looking for a detailed reference for participation in research or for a presentation will find this a great resource. Rating: 3 Stars - Doody's.com, September 2014 .designed to complement standard anatomic cardiovascular textbooks by discussing some areas that are not usually included in them. Among the topics are: the molecular basis of cardiac development; cardiac atrophy and remodeling; the pathophysiology of cardiac hypertrophy and heart failure; ischemic heart disease and its consequences. --ProtoView.com, April 2014 .designed to complement standard anatomic cardiovascular textbooks by discussing some areas that are not usually included in them. Among the topics are: the molecular basis of cardiac development; cardiac atrophy and remodeling; the pathophysiology of cardiac hypertrophy and heart failure; ischemic heart disease and its consequences. --ProtoView.com, April 2014 Author InformationMonte S. Willis, MD, PhD, is associate professor at the Department of Pathology and Laboratory Medicine, Director of Campus Health Services Laboratory, and Director of the McLendon Clinical Laboratories at the University of North Carolina in Chapel Hill. NC, where he leads a research team studying the role of the ubiquitin proteasome system in metabolism and the pathophysiology of cardiac disease, teaches in the School of Medicine and Graduate School, and is currently completing his MBA at Kenan-Flagler Business School. Dr. Willis received his combined MD and PhD training at the University of Nebraska Medical Center. He went on to complete a residency in the Department of Pathology and post-doctoral training in in Burns, Trauma, and Critical Care in the Department of Surgery at the University of Texas Southwestern Medical Center. He has received multiple honors for his research, including the Cotran Early Career Investigator Award from the American Society of Investigative Pathology, and the Jefferson-Pilot Fellowship in Academic Medicine from the University of North Carolina School of Medicine. He is active on the editorial boards of the American Journal of Pathology, Cardiovascular Pathology, Journal of Molecular and Cellular Cardiology, American Journal of Physiology-Heart and Circulatory Physiology, and Skeletal Muscle. Dr. Willis has published more than 180 manuscripts in clinical, translational, and the basic sciences and edited multiple medical textbooks, including Molecular and Translational Vascular Medicine (2012); Translational Cardiology: Molecular Basis of Cardiac Metabolism, Cardiac Remodeling, Translational Therapies, and Imaging Techniques (2012), and ASCP Caseset Laboratory Medicine (2011). The Cellular and Molecular Pathobiology of Cardiovascular disease, co-edited with Drs. Homeister and Stone, will be published in 2014. Jonathon W. Homeister earned Bachelor of Arts degrees in Biology and Chemistry in 1985 from Hope College, where he began his research endeavors mentored by Christoper C. Barney, Ph.D. He then earned the Doctor of Philosophy in Pharmacology, mentored by Benedict R. Lucchesi, M.D., Ph.D., and the Doctor of Medicine from the University of Michigan in 1993. He received residency training in anatomic pathology at the University of Michigan Hospitals and is a Diplomat of the American Board of Pathology. After residency, he received additional research training as an Associate of the Howard Hughes Medical Institute, mentored by John B. Lowe, M.D. He is currently an Associate Professor in the Department of Pathology and Laboratory Medicine, and member of the McAllister Heart Institute at the University of North Carolina at Chapel Hill, where he is also Director of the Molecular and Cellular Pathology Graduate Program. His clinical interests include cardiovascular, autopsy, and forensic pathology, and his research interests focus on the glycobiology inherent to leukocyte trafficking, with particular respect to the pathogenesis of cardiovascular diseases including atherosclerosis and thrombosis. Dr. Stone graduated summa cum laude from Wabash College with a B.A. in chemistry. He then completed the Medical Scientist Training Program at the University of Michigan where he earned both an MD and a PhD in Biological Chemistry. His doctoral thesis research was performed in the laboratory of Prof. Michael A. Marletta, where he purified and characterized the sensor for nitric oxide, the soluble form of guanylate cyclase. Dr. Stone completed the Anatomic Pathology Residency Program at Brigham and Women's Hospital and Harvard Medical School. Dr. Stone completed clinical fellowship training in Cardiovascular Pathology at BWH under Prof. Frederick Schoen. He also completed post-doctoral research on endothelial cell biology in the Vascular Research Division at BWH and at Children's Hospital with Prof. Tucker Collins. Dr. Stone is currently Head of the Cardiovascular Pathology Service and Director of the Autopsy Service at Massachusetts General Hospital. He is also an Associate Professor of Pathology at Harvard Medical School. Dr. Stone directs a research laboratory in the Center for Systems Biology at MGH studying mechanisms underlying cardiovascular diseases. His group has particular focus on vascular cell activation, vasculitis and atherosclerosis, and on bridging the gap between model systems and human cardiovascular diseases. Tab Content 6Author Website:Countries AvailableAll regions |