Cells, Molecules and Temperature: Conformational Flexibility of Macromolecules and Ecological Adaptation

Author:   Vladimir Ya. Alexandrov ,  V. A. Bernstam
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Volume:   21
ISBN:  

9783540080268


Pages:   342
Publication Date:   01 June 1977
Format:   Hardback
Availability:   Out of stock   Availability explained


Our Price $176.88 Quantity:  
Add to Cart

Share |

Cells, Molecules and Temperature: Conformational Flexibility of Macromolecules and Ecological Adaptation


Add your own review!

Overview

Full Product Details

Author:   Vladimir Ya. Alexandrov ,  V. A. Bernstam
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Volume:   21
Weight:   0.690kg
ISBN:  

9783540080268


ISBN 10:   3540080260
Pages:   342
Publication Date:   01 June 1977
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Out of Print
Availability:   Out of stock   Availability explained

Table of Contents

1. Modificational Changes of the Primary Thermoresistance of Cells.- 1.1 The Primary Thermoresistance of Cells.- 1.1.1 The Primary and General Thermostability of Cells.- 1.1.2 Biochemical Aspects of Primary Thermoresistance.- 1.1.3 Methods for Evaluation of Primary Thermostability of Cells.- 1.2 The Level of Primary Thermostability of Cells and Habitat Temperature.- 1.2.1 Effects of Temperature Variations Within the Tolerant Zone on Primary Thermostability of Cells (the Temperature Adjustment).- 1.2.1.1 Protozoa.- 1.2.1.2 Algae.- 1.2.1.3 Animal Tissue Cells.- 1.2.1.4 Plant Tissue Cells.- Summary.- 1.2.2 Effects of Habitat Temperature Variations Outside the Tolerant Zone Upon the Primary Thermostability of Cells (Temperature Hardenings).- 1.2.2.1 Heat Hardening of Plant Cells.- 1.2.2.2 Heat Hardening of Animal Cells.- Summary.- 1.2.2.3 Modification of Thermostability of Plant Cells by Cold Hardening.- 1.3 Changes in the Cellular Primary Thermostability Produced by Non-Temperature Factors.- 1.3.1 Variations in Cellular Thermostability During Growth and Development of Plants.- 1.3.2 Changes of Thermostability of Animal Cells in Ontogenesis.- 1.3.3 Changes in Thermostability of Plant Cells Caused by Water Deficiency.- 1.3.4 Effects of Salinity on Thermoresistance of Cells.- 1.3.5 Effects of Wound Injury on Thermostability of Plant Cells.- Summary.- 2. Genotypic Changes of the Primary Thermoresistance of Cells.- 2.1 Animals.- 2.2 Plants.- 2.3 Microorganisms.- Summary.- 3. Variations in Thermostability of Protoplasmic Proteins as a Basis for Changes in the Level of Primary Cellular Thermoresistance.- 3.1 Are the Shifts in Cellular Thermoresistance Accompanied by Alteration of the Cellular Resistance to Other Injurious Agents ?.- 3.2 Changes in Protein Thermostability Caused by Isolation of the Proteins From Cells.- 3.2.1 Modificational Variations of Protein Thermostability.- 3.2.1.1 Plants.- 3.2.1.2 Animals.- 3.2.1.3 Microorganisms.- 3.2.1.3 Summary.- 3.2.2 Genotypic Variations in Thermostability of Proteins.- 3.2.2.1 Plants.- 3.2.2.2 Animals.- 3.2.2.3 Microorganisms.- Summary.- 4. Adaptive Modifications of Conformational Flexibility of Macromolecules as a Basis for Changes of the Protein Thermostability.- 4.1 The Correlation Between Thermostability of Proteins and the Environmental Temperature Conditions of a Species' Life Cannot be Explained by an Adaptive Significance of the Level of Thermostability.- 4.2 A Hypothesis of the Adaptive Significance of a Correspondence of the Conformational Flexibility Level of the Protein Molecules to the Environmental Temperature Conditions of Species' Life.- 4.2.1 Conformational Changes of the Functioning Protein Macromolecules.- Summary.- 4.2.2 Effects of Temperature on the Conformation of Protein Macromolecules.- Summary.- 4.2.3 Adaptive Changes of the Conformational Flexibility of Protein Molecules With Changes in the Environmental Temperature.- 4.2.4 Thermostability of the Protein as an Indirect Indicator of the Conformational Flexibility of Protein Macromolecules.- 4.2.5 Conformational Flexibility of Protein Molecules and Adaptation of Organisms to the Environmental Temperature in Phylogenesis.- 4.2.6 Conformational Flexibility of Protein Molecules and Reactive Changes in the Primary Thermostability of Cells.- Summary.- 4.3 The Level of Conformational Flexibility of Protein Molecules and Their Resistance to Non-Thermal Agents.- 4.3.1 Non-Thermal Denaturants.- 4.3.2 Proteinases.- Summary.- 5. The Plausible Points of Application of the Natural Selection During Alteration of a Correspondence Between the Level of Conformational Flexibility of Protein Molecules and the Temperature Ecology of a Species.- 5.1 Activation Energy.- 5.2 Affinity of Enzymes to Substrates, the Michaelis Constant.- 5.3 A Temperature Optimum for Enzyme Activity.- Summary.- 5.4 Lifetime of Proteins in the Cell.- Summary.- 6. Plausible Mechanisms of Regulation of the Level of Conformational Flexibility of Proteins.- 6.1 Modificational Changes of the Conformational Flexibility of Protein Macromolecules.- 6.1.1 Heat Hardening of Plant Cells.- 6.1.1.1 Principle Features of the Mechanism Responsible for Heat Hardening.- 6.1.1.2 Action of Anti-Denaturants on Proteins and Cells.- 6.1.1.3 Suppositions About the Biochemical Mechanism Responsible for Heat Hardening of Cells.- 6.1.2 Other Types of Modificational Changes of Conformational Flexibility of Protein Molecules.- Summary.- 6.2 Genotypic Changes of the Conformational Flexibility of Protein Molecules.- 6.2.1 Some Information Concerning the Genetics of Thermostability.- 6.2.2 Mechanisms of Genotypic Changes of the Conformational Flexibility of Protein Molecules.- Summary.- 7. Thermostability of Nucleic Acids and the Temperature Environment of Species' Life.- 4.2.1 Conformational Changes of the Functioning Protein Macromolecules.- Summary.- 4.2.2 Effects of Temperature on the Conformation of Protein Macromolecules.- Summary.- 4.2.3 Adaptive Changes of the Conformational Flexibility of Protein Molecules With Changes in the Environmental Temperature.- 4.2.4 Thermostability of the Protein as an Indirect Indicator of the Conformational Flexibility of Protein Macromolecules.- 4.2.5 Conformational Flexibility of Protein Molecules and Adaptation of Organisms to the Environmental Temperature in Phylogenesis.- 4.2.6 Conformational Flexibility of Protein Molecules and Reactive Changes in the Primary Thermostability of Cells.- Summary.- 4.3 The Level of Conformational Flexibility of Protein Molecules and Their Resistance to Non-Thermal Agents.- 4.3.1 Non-Thermal Denaturants.- 4.3.2 Proteinases.- Summary.- 5. The Plausible Points of Application of the Natural Selection During Alteration of a Correspondence Between the Level of Conformational Flexibility of Protein Molecules and the Temperature Ecology of a Species.- 5.1 Activation Energy.- 5.2 Affinity of Enzymes to Substrates, the Michaelis Constant.- 5.3 A Temperature Optimum for Enzyme Activity.- Summary.- 5.4 Lifetime of Proteins in the Cell.- Summary.- 6. Plausible Mechanisms of Regulation of the Level of Conformational Flexibility of Proteins.- 6.1 Modificational Changes of the Conformational Flexibility of Protein Macromolecules.- 6.1.1 Heat Hardening of Plant Cells.- 6.1.1.1 Principle Features of the Mechanism Responsible for Heat Hardening.- 6.1.1.2 Action of Anti-Denaturants on Proteins and Cells.- 6.1.1.3 Suppositions About the Biochemical Mechanism Responsible for Heat Hardening of Cells.- 6.1.2 Other Types of Modificational Changes of Conformational Flexibility of Protein Molecules.- Summary.- 6.2 Genotypic Changes of the Conformational Flexibility of Protein Molecules.- 6.2.1 Some Information Concerning the Genetics of Thermostability.- 6.2.2 Mechanisms of Genotypic Changes of the Conformational Flexibility of Protein Molecules.- Summary.- 7. Thermostability of Nucleic Acids and the Temperature Environment of Species'1. Modificational Changes of the Primary Thermoresistance of Cells.- 1.1 The Primary Thermoresistance of Cells.- 1.1.1 The Primary and General Thermostability of Cells.- 1.1.2 Biochemical Aspects of Primary Thermoresistance.- 1.1.3 Methods for Evaluation of Primary Thermostability of Cells.- 1.2 The Level of Primary Thermostability of Cells and Habitat Temperature.- 1.2.1 Effects of Temperature Variations Within the Tolerant Zone on Primary Thermostability of Cells (the Temperature Adjustment).- 1.2.1.1 Protozoa.- 1.2.1.2 Algae.- 1.2.1.3 Animal Tissue Cells.- 1.2.1.4 Plant Tissue Cells.- Summary.- 1.2.2 Effects of Habitat Temperature Variations Outside the Tolerant Zone Upon the Primary Thermostability of Cells (Temperature Hardenings).- 1.2.2.1 Heat Hardening of Plant Cells.- 1.2.2.2 Heat Hardening of Animal Cells.- Summary.- 1.2.2.3 Modification of Thermostability of Plant Cells by Cold Hardening.- 1.3 Changes in the Cellular Primary Thermostability Produced by Non-Temperature Factors.- 1.3.1 Variations in Cellular Thermostability During Growth and Development of Plants.- 1.3.2 Changes of Thermostability of Animal Cells in Ontogenesis.- 1.3.3 Changes in Thermostability of Plant Cells Caused by Water Deficiency.- 1.3.4 Effects of Salinity on Thermoresistance of Cells.- 1.3.5 Effects of Wound Injury on Thermostability of Plant Cells.- Summary.- 2. Genotypic Changes of the Primary Thermoresistance of Cells.- 2.1 Animals.- 2.2 Plants.- 2.3 Microorganisms.- Summary.- 3. Variations in Thermostability of Protoplasmic Proteins as a Basis for Changes in the Level of Primary Cellular Thermoresistance.- 3.1 Are the Shifts in Cellular Thermoresistance Accompanied by Alteration of the Cellular Resistance to Other Injurious Agents ?.- 3.2 Changes in Protein Thermostability Caused by Isolation of the Proteins From Cells.- 3.2.1 Modificational Variations of Protein Thermostability.- 3.2.1.1 Plants.- 3.2.1.2 Animals.- 3.2.1.3 Microorganisms.- 3.2.1.3 Summary.- 3.2.2 Genotypic Variations in Thermostability of Proteins.- 3.2.2.1 Plants.- 3.2.2.2 Animals.- 3.2.2.3 Microorganisms.- Summary.- 4. Adaptive Modifications of Conformational Flexibility of Macromolecules as a Basis for Changes of the Protein Thermostability.- 4.1 The Correlation Between Thermostability of Proteins and the Environmental Temperature Conditions of a Species' Life Cannot be Explained by an Adaptive Significance of the Level of Thermostability.- 4.2 A Hypothesis of the Adaptive Significance of a Correspondence of the Conformational Flexibility Level of the Protein Molecules to the Environmental Temperature Conditions of Species' Life.- 4.2.1 Conformational Changes of the Functioning Protein Macromolecules.- Summary.- 4.2.2 Effects of Temperature on the Conformation of Protein Macromolecules.- Summary.- 4.2.3 Adaptive Changes of the Conformational Flexibility of Protein Molecules With Changes in the Environmental Temperature.- 4.2.4 Thermostability of the Protein as an Indirect Indicator of the Conformational Flexibility of Protein Macromolecules.- 4.2.5 Conformational Flexibility of Protein Molecules and Adaptation of Organisms to the Environmental Temperature in Phylogenesis.- 4.2.6 Conformational Flexibility of Protein Molecules and Reactive Changes in the Primary Thermostability of Cells.- Summary.- 4.3 The Level of Conformational Flexibility of Protein Molecules and Their Resistance to Non-Thermal Agents.- 4.3.1 Non-Thermal Denaturants.- 4.3.2 Proteinases.- Summary.- 5. The Plausible Points of Application of the Natural Selection During Alteration of a Correspondence Between the Level of Conformational Flexibility of Protein Molecules and the Temperature Ecology of a Species.- 5.1 Activation Energy.- 5.2 Affinity of Enzymes to Substrates, the Michaelis Constant.- 5.3 A Temperature Optimum for Enzyme Activity.- Summary.- 5.4 Lifetime of Proteins in the Cell.- Summary.- 6. Plausible Mechanisms of Regulation of the Level of Conformational Flexibility of Proteins.- 6.1 Modificational Changes of the Conformational Flexibility of Protein Macromolecules.- 6.1.1 Heat Hardening of Plant Cells.- 6.1.1.1 Principle Features of the Mechanism Responsible for Heat Hardening.- 6.1.1.2 Action of Anti-Denaturants on Proteins and Cells.- 6.1.1.3 Suppositions About the Biochemical Mechanism Responsible for Heat Hardening of Cells.- 6.1.2 Other Types of Modificational Changes of Conformational Flexibility of Protein Molecules.- Summary.- 6.2 Genotypic Changes of the Conformational Flexibility of Protein Molecules.- 6.2.1 Some Information Concerning the Genetics of Thermostability.- 6.2.2 Mechanisms of Genotypic Changes of the Conformational Flexibility of Protein Molecules.- Summary.- 7. Thermostability of Nucleic Acids and the Temperature Environment of Species' Life.- Summary.- 8. Saturation of Fatty Acids and the Temperature Conditions of Life.- Summary.- Epilogue.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List