|
![]() |
|||
|
||||
OverviewDue to the dramatic increase in the number of users, the cellular communications network has become so congested that traditional transmission technology can no longer handle the traffic. Spread spectrum technology, used in military applications for a number of years, now provides a solution to the problem of congestion in the cellular network. This work is designed to introduce electrical and communications engineers to this area of wireless digital comunications. It introduces the Code Division Multiple Access standard which promises both increased capacity and increased security for the cellular network. The theory and practice of this new technology are covered and compared to the old in order to provide a clear picture of the advantages offered by CDMA. Full Product DetailsAuthor: Andrew ViterbiPublisher: Pearson Education (US) Imprint: Pearson Dimensions: Width: 19.40cm , Height: 2.10cm , Length: 19.40cm Weight: 0.454kg ISBN: 9780201633740ISBN 10: 0201633744 Pages: 272 Publication Date: 30 May 1995 Audience: College/higher education , Tertiary & Higher Education Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction. Definition and Purpose. Basic Limitations of the Conventional Approach. Spread Spectrum Principles. Organization of the Book. 2. Random and Pseudorandom Signal Generation. Purpose. Pseudorandom Sequences. Maximal Length Linear Shift Register Sequences. Randomness Properties of MLSR Sequences. Conclusion. Generating Pseudorandom Signals (Pseudonoise) from Pseudorandom Sequences. First- and Second-Order Statistics of Demodulator Output in Multiple Access Interference. Statistics for QPSK Modulation by Pseudorandom Sequences. Examples. Bound for Bandlimited Spectrum. Error Probability for BPSK or QPSK with Constant Signals in Additive Gaussian Noise and Interference. Appendix 2A: Optimum Receiver Filter for Bandlimited Spectrum. 3. Synchronization of Pseudorandom Signals. Purpose. Acquisition of Pseudorandom Signal Timing. Hypothesis Testing for BPSK Spreading. Hypothesis Testing for QPSK Spreading. Effect of Frequency Error. Additional Degradation When N is Much Less Than One Period. Detection and False Alarm Probabilities. Fixed Signals in Gaussian Noise (L=1). Fixed Signals in Gaussian Noise with Postdetection Integration (L>1). Rayleigh Fading Signals (L>/=1). The Search Procedure and Acquisition Time. Single-Pass Serial Search (Simplified). Single-Pass Serial Search (Complete). Multiple Dwell Serial Search. Time Tracking of Pseudorandom Signals. Early-Late Gate Measurement Statistics. Time Tracking Loop. Carrier Synchronization. Appendix 3A: Likelihood Functions and Probability Expressions. Bayes and Neyman-Pearson Hypothesis Testing. Coherent Reception in Additive White Gaussian Noise. Noncoherent Reception in AWGN for Unfaded Signals. Noncoherent Reception of Multiple Independent Observations of Unfaded Signals in AWGN. Noncoherent Reception of Rayleigh-Faded Signals in AWGN. 4. Modulation and Demodulation of Spread Spectrum Signals in Multipath and Multiple Access Interference. Purpose. Chernoff and Battacharyya Bounds. Bounds for Gaussian Noise Channel. Chernoff Bound for Time-Synchronous Multiple Access Interference with BPSK Spreading. Chernoff Bound for Time-Synchronous Multiple Access Interference with QPSK Spreading. Improving the Chernoff Bound by a Factor of 2. Multipath Propagation: Signal Structure and Exploitation. Pilot-Aided Coherent Multipath Demodulation. Chernoff Bounds on Error Probability for Coherent Demodulation with Known Path Parameters. Rayleigh and Rician Fading Multipath Components. Noncoherent Reception. Quasi-optimum Noncoherent Multipath Reception for M-ary Orthogonal Modulation. Performance Bounds. Search Performance for Noncoherent Orthogonal M-ary Demodulators. Power Measurement and Control for Noncoherent Orthogonal M-ary Demodulators. Power Control Loop Performance. Power Control Implications. Appendix 4A: Chernoff Bound with Imperfect Parameter Estimates. 5. Coding and Interleaving. Purpose. Interleaving to Achieve Diversity. Forward Error Control Coding - Another Means to Exploit Redundancy. Convolutional Code Structure. Maximum Likelihood Decoder - Viterbi Algorithm. Generalization of the Preceding Example. Convolutional Code Performance Evaluation. Error Probability for Tailed-off Block. Bit Error Probability. Generalizations of Error Probability Computation. Catastrophic Codes. Generalization to Arbitrary Memoryless Channels - Coherent and Noncoherent. Error Bounds for Binary-Input, Output-Symmetric Channels with Integer Metrics. A Near-Optimal Class of Codes for Coherent Spread Spectrum Multiple Access. Implementation. Decoder Implementation. Generating Function and Performance. Performance Comparison and Applicability. Orthogonal Convolutional Codes for Noncoherent Demodulation of Rayleigh Fading Signals. Implementation. Performance for L-Path Rayleigh Fading. Conclusions and Caveats. Appendix 5A: Improved Bounds for Symmetric Memoryless Channels and the AWGN Channel. Appendix 5B: Upper Bound on Free Distance of Rate 1/n Convolutional Codes. 6. Capacity, Coverage, and Control of Spread Spectrum Multiple Access Networks. General. Reverse Link Power Control. Multiple Cell Pilot Tracking and Soft Handoff. Other-Cell Interference. Propagation Model. Single-Cell Reception - Hard Handoff. Soft Handoff Reception by the Better of the Two Nearest Cells. Soft Handoff Reception by the Best of Multiple Cells. Cell Coverage Issues with Hard and Soft Handoff. Hard Handoff. Soft Handoff. Erlang Capacity of Reverse Links. Erlang Capacity for Conventional Assigned-Slot Multiple Access. Spread Spectrum Multiple Access Outage - Single Cell and Perfect Power Control. Outage with Multiple-Cell Interference. Outage with Imperfect Power Control. An Approximate Explicit Formula for Capacity with Imperfect Power Control. Designing for Minimum Transmitted Power. Capacity Requirements for Initial Accesses. Erlang Capacity of Forward Links. Forward Link Power Allocation. Soft Handoff Impact on Forward Link. Orthogonal Signals for Same-Cell Users. Interference Reduction with Multisectored and Distributed Antennas. Interference Cancellation. Epilogue. References and Bibliography. Index.ReviewsAuthor InformationAndrew J. Viterbi is a pioneer of wireless digital communications technology. He is best known as the creator of the digital decoding technique used in direct-broadcast satellite television receivers and in wireless cellular telephones, as well as numerous other applications. He is co-founder, Chief Technical Officer, and Vice Chairman of QUALCOMM Incorporated, developer of mobile satellite and wireless land communication systems employing CDMA technology. Dr. Viterbi has received numerous awards, including the Christopher Columbus Medal, the IEEE Alexander Graham Bell Award, the Marconi International Fellowship Award, the IEEE Information Society Shannon Lecturer Award, and awards from the NEC C&C Foundation and the Eduard Rhein Foundation. 0201633744AB04062001 Tab Content 6Author Website:Countries AvailableAll regions |