Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials

Author:   Sivakumar Manickam (The University of Nottingham Malaysia Campus, Semenyih) ,  Muthupandian Ashokkumar (University of Melbourne, Parkville, Australia)
Publisher:   Pan Stanford Publishing Pte Ltd
ISBN:  

9789814411547


Pages:   454
Publication Date:   05 August 2014
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $297.56 Quantity:  
Add to Cart

Share |

Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials


Add your own review!

Overview

"As nanomaterials and their end products occupy the pinnacle position of consumer markets, it becomes vital to analyze their generation processes. One of the green chemistry principles underlines the need for unusual energy sources to generate them. Utilizing the extreme energy from the collapse of cavitation bubbles, generated by either ultrasound or hydrodynamic forces, for the generation of nanomaterials is a merit to consider in this ""Green Chemical Processing Era."" A wide range of nanomaterials have been developed in the past decade using cavitation or coupling cavitation with other techniques such as microwave, photochemistry, and electrochemistry, resulting in nanomaterials with unique morphologies, reduced size, narrow size distribution, and innumerous advantages. While a few currently available books deal with the fundamental aspects of cavitation and sonochemistry, this book is devoted specifically to the technologically important nanomaterials obtained by cavitation."

Full Product Details

Author:   Sivakumar Manickam (The University of Nottingham Malaysia Campus, Semenyih) ,  Muthupandian Ashokkumar (University of Melbourne, Parkville, Australia)
Publisher:   Pan Stanford Publishing Pte Ltd
Imprint:   Pan Stanford Publishing Pte Ltd
Dimensions:   Width: 15.20cm , Height: 2.80cm , Length: 22.90cm
Weight:   0.793kg
ISBN:  

9789814411547


ISBN 10:   981441154
Pages:   454
Publication Date:   05 August 2014
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

This book is about new ways of making nanomaterials using cavitation effects. The new book offers a multi-author perspective on new developments and research directions in this field. Topics covered here are really new and innovative, and hence will really inspire scientists and students. Prof. Mahito Atobe, Yokohama National University, Japan This book summarizes the most recent achievements in the sonochemical synthesis of nanomaterials. Among a variety of approaches, the utilization of acoustic cavitation provides rapid and environmentally friendly route to access nanostructured materials with controlled properties. The combination of power ultrasound with other reagent-free techniques largely discussed in this book will undoubtedly attract readers' attention. Dr. Sergey Nikitenko, CNRS, ICSM, France


This book is about new ways of making nanomaterials using cavitation effects. The new book offers a multi-author perspective on new developments and research directions in this field. Topics covered here are really new and innovative, and hence will really inspire scientists and students. Prof. Mahito Atobe, Yokohama National University, Japan This book summarizes the most recent achievements in the sonochemical synthesis of nanomaterials. Among a variety of approaches, the utilization of acoustic cavitation provides rapid and environmentally friendly route to access nanostructured materials with controlled properties. The combination of power ultrasound with other reagent-free techniques largely discussed in this book will undoubtedly attract readers' attention. Dr. Sergey Nikitenko, CNRS, ICSM, France


Author Information

Sivakumar Manickam is a professor at the Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia Campus. He specializes in process engineering of nanomaterials, especially nanopharmaceuticals, and has worked in the area of ultrasound and hydrodynamic cavitation since 1997. He also heads the Manufacturing and Industrial Processes Research Division and is the coordinator of the Centre for Nanotechnology and Advanced Materials. Prof. Manickam is also the recipient of the JSPS fellowship, Japan; the Fellow of Higher Education Academy, UK; and member of the Institute of Nanotechnology (IoN), UK. His research group focuses on the process development of cavitation-based reactors toward technologically important nanomaterials. Muthupandian Ashokkumar is a professor at the School of Chemistry, University of Melbourne, Australia. He is a physical chemist who specializes in sonochemistry. He has developed a number of novel techniques to characterize acoustic cavitation bubbles and has made major contributions of applied sonochemistry to the food and dairy industry. Prof. Ashokkumar’s recent research involves the ultrasonic synthesis of functional nano- and biomaterials, including protein microspheres that can be used in diagnostic and therapeutic medicine. He is a Fellow of the Royal Australian Chemical Institute and recipient of the Grimwade Prize in Industrial Chemistry.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List