Causal Inference for Machine Learning Engineers: A Practical Guide

Author:   Durai Rajamanickam
Publisher:   Springer International Publishing AG
ISBN:  

9783031996795


Pages:   245
Publication Date:   03 January 2026
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $158.37 Quantity:  
Add to Cart

Share |

Causal Inference for Machine Learning Engineers: A Practical Guide


Overview

This book provides a comprehensive exploration of causal inference, specifically tailored for machine learning practitioners. It begins by establishing the fundamental distinction between correlation and causation, emphasizing why traditional machine learning models—primarily focused on pattern recognition—often fall short in scenarios that require an understanding of cause and effect. The book introduces core causal concepts, such as interventions and counterfactuals, and explains how these ideas are formalized through tools like causal graphs (Directed Acyclic Graphs, or DAGs) and the do-operator. Readers will learn to identify common pitfalls in observational data, including confounding, selection bias, and Simpson’s Paradox, and will understand why these challenges necessitate a causal approach.   Causal Inference for Machine Learning Engineers: A Practical Guide then moves to practical methods for causal estimation, detailing techniques such as regression adjustment, propensity score methods (including matching, stratification, and inverse probability weighting), and instrumental variables. The book delves into advanced topics such as mediation analysis, causal discovery algorithms (PC and FCI), and transportability, providing a roadmap for applying causal reasoning in diverse real-world applications across healthcare, economics, and the social sciences. A significant portion is dedicated to integrating causal inference with deep learning, introducing architectures such as TARNet, CFRNet, and DragonNet, as well as frameworks like Double Machine Learning, all designed to address the challenges of high-dimensional data and improve causal effect estimation in complex settings.

Full Product Details

Author:   Durai Rajamanickam
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
ISBN:  

9783031996795


ISBN 10:   3031996798
Pages:   245
Publication Date:   03 January 2026
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Durai Rajamanickam is a distinguished AI and data science leader with over two decades of experience, specializing in the application of machine learning to critical real-world challenges in healthcare, finance, and legal technology. Renowned for his ability to distill complex theoretical concepts into actionable solutions, he has spearheaded transformative AI initiatives across various industries.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List