|
![]() |
|||
|
||||
OverviewThis book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence. Full Product DetailsAuthor: Emily Riehl (Harvard University, Massachusetts)Publisher: Cambridge University Press Imprint: Cambridge University Press Volume: 24 Dimensions: Width: 15.20cm , Height: 2.50cm , Length: 22.90cm Weight: 0.720kg ISBN: 9781107048454ISBN 10: 1107048451 Pages: 372 Publication Date: 26 May 2014 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationEmily Riehl is a Benjamin Peirce Fellow in the Department of Mathematics at Harvard University, Massachusetts and a National Science Foundation Mathematical Sciences Postdoctoral Research Fellow. Tab Content 6Author Website:Countries AvailableAll regions |