|
|
|||
|
||||
OverviewThis book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory. Full Product DetailsAuthor: Steve AwodeyPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG ISBN: 9783032087294ISBN 10: 3032087295 Pages: 140 Publication Date: 03 January 2026 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: Not yet available This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release. Table of ContentsChapter 1. Introduction.- Chapter 2. Cartesian cubical sets.- Chapter 3. The cofibration weak factorization system.- Chapter 4. The fibration weak factorization system.- Chapter 5. The weak equivalences.- Chapter 6. The Frobenius condition.- Chapter 7. A universal fibration.- Chapter 8. The equivalence extension property.- Chapter 9. The fibration extension property.ReviewsAuthor InformationSteve Awodey holds the Dean’s Chair in Logic at Carnegie Mellon University, where he is Professor of Philosophy and Mathematics. A founder of Homotopy Type Theory, he co-organized a special research year on Univalent Foundations at the Institute for Advanced Study (Princeton). His numerous publications include the textbook Category Theory and the collaborative volume Homotopy Type Theory: Univalent Foundations of Mathematics. He serves on several journal editorial boards and is coordinating editor of the Journal of Symbolic Logic. He has held visiting appointments at the Poincaré Institute (Paris), Newton Institute (Cambridge), Hausdorff Institute (Bonn), and the Centre for Advanced Studies (Oslo), and is currently a Royal Society Wolfson Visiting Fellow at Cambridge University. Tab Content 6Author Website:Countries AvailableAll regions |
||||